From 1 - 10 / 61
  • <p>Exploring for the Future (EFTF) is a four year $100.5 million initiative by the Australian Government that aims to boost northern Australia's attractiveness as a destination for investment in resource exploration. As part of this program, Geoscience Australia has been tasked with gathering new pre-competitive data and information concerning potential mineral, energy and groundwater resources concealed beneath the surface, on an unprecedented scale. To ensure the program has the greatest impact Geoscience Australia will use innovative techniques in greenfield areas where the resource potential is completely unknown at a semi-continental scale. <p>A major EFTF output is the acquisition of deep crustal seismic reflection data. The first tranche of this was completed in early August 2017 in the region between the southern McArthur Basin to the Mt Isa western succession, crossing the South Nicholson Basin and Murphy Province. Prior to this survey, the region contained no seismic data and minimal well data. <p>This new seismic data will support exploration activities by providing a better understanding of the basin and basement architecture and structural evolution of the region, and assist in identifying geological terrains with resource potential. The preliminary processed data was released at the Annual Geoscience Exploration Seminar in March 2018 (Henson et al., 2018). This record presents the interpreted data alongside a geological summary of the region including the McArthur Basin, South Nicholson Basin and Mount Isa Orogen and provides a baseline for further studies in the region including the identification of a new sub-basin and presentation of current knowledge of the stratigraphy and geochemistry. <p>The new seismic reflection data acquired over the South Nicholson Basin as part of the Exploring for the Future program has outlined many areas of future opportunity. Geoscience Australia is currently pursuing an exciting program building upon previous work in the region, including extensive geochemical and geochronological studies aiming to build a greater understanding of the stratigraphy imaged by the seismic data. Further, our work in this region has already demonstrated the complicated and poorly understood nature of the stratigraphy and structural relationships within the region.

  • This Record presents twelve new zircon U-Pb geochronological results from the South Nicholson region, conducted on Geoscience Australia’s Sensitive High Resolution Ion Micro Probe (SHRIMP), as part of the Commonwealth Government’s Exploring for the Future (EFTF) program, an initiative to better understand the mineral, energy and groundwater potential of northern Australia. These data will facilitate greater understanding of the geological evolution of the South Nicholson region, a vast and underexplored region extending across north-eastern Northern Territory and far north-western Queensland. Samples were collected from across the South Nicholson region including MOUNT DRUMMOND, CALVERT HILLS, BRUNETTE DOWNS (NT), LAWN HILL and CAMOOWEAL (QLD) 250K mapsheets. Four samples are from outcrop and eight samples from six stratigraphic and exploration drillholes. Samples were collected from the Paleoproterozoic Murphy Province and from overlying successions of the Paleoproterozoic Benmara Group and the Mesoproterozoic South Nicholson Group. Several samples from drillholes, have stratigraphic affinities that are uncertain and speculative.

  • The Exploring for the Future Program (EFTF) is a $100.5 million four year, federally funded initiative to better characterise the mineral, energy and groundwater potential of northern Australia. A key focus area of the initiative is the South Nicholson region, situated across the Northern Territory and Queensland border. The South Nicholson region is located between two highly prospective provinces, the greater McArthur Basin in the Northern Territory, the Lawn Hill Platform and the Mount Isa Province in Queensland–Northern Territory, which both have demonstrated hydrocarbon and base metal resources. In contrast, the South Nicholson region is not well understood geologically, is mostly undercover with limited well data, and prior to EFTF contained limited seismic coverage. Re–Os analyses in this study were undertaken to complement seismic data, U–Pb geochronology and geochemistry data to better understand the geological evolution and resource potential of the South Nicholson region. Five organic carbon bearing sedimentary samples from drillholes BMR Ranken 1, NTGS00/1, DDH 83/1 and DDH 83/4 located across the South Nicholson region were analysed for whole rock Re–Os. The aim of the analyses was to better constrain the depositional age of basin units in the region, and to potentially provide insights into the timing of post-depositional processes such as fluid events and hydrocarbon generation and/or migration. Samples belong to the Mesoproterozoic South Nicholson Group, Paleoproterozoic Fickling and McNamara groups, and the Neoproterozoic to Devonian Georgina Basin. Samples were analysed at the University of Alberta, Canada.

  • <p>In this study, a total of 53 surface outcrop samples were analysed for both inorganic and organic whole-rock geochemistry as part of Exploring for the Future (EFTF) program, a government initiative undertaken by the Australian Government to boost investment in resource exploration and development in northern Australia. The samples were collected during two EFTF funded field seasons conducted in May 2017 (18 samples, GA job number 33004) and May 2018 (35 samples, GA job number 33228). <p>This data release contains the results of elemental analyses including X-Ray Fluorescence (XRF), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), iron titration (FeO), Loss-On-Ignition (LOI) and Rock-Eval pyrolysis on 53 outcrop samples collected across two seasons of fieldwork in the South Nicholson region. This data release are provided to facilitate establishment of important baseline assessments and whole rock characterisation of regional sedimentary rocks for insight into the resource prospectivity of northern Australian basins. These data was generated at the Geochemistry Laboratories at Geoscience Australia as part of the Exploring for the Future program

  • Zircon and xenotime U–Pb SHRIMP geochronology was conducted on samples from the South Nicholson Basin, and western Mount Isa Orogen. These samples were collected from outcrop and core from the Northern Territory and Queensland. The age data indicate the South Nicholson Basin was deposited after ca 1483 Ma but deposition most likely had ceased by ca 1266 Ma; the latter age likely represents post-diagenetic fluid flow in the area, based on U–Pb xenotime data. Geochronology presented here provides the first direct age data confirming the South Nicholson Group is broadly contemporaneous with the Roper Group of the McArthur Basin, which has identified facies with high hydrocarbon prospectivity. In addition, geochronology on the Paleoproterozoic McNamara Group provides new age constraints that have implications for the regional stratigraphy. The data obtained in this geochronological study allow for a comprehensive revision of the existing stratigraphic framework, new correlations and enhances commodity prospectivity in central northern Australia.

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1750 m provide samples of the highest quality for a comprehensive geochemical program designed to inform on the energy and mineral prospectivity of the Carrara Sub-basin. Total Organic Carbon (TOC) contents from Rock-Eval pyrolysis of the Cambrian and Proterozoic sections demonstrate the potential for several thick black shales as source rocks and unconventional plays. Evidence for retained hydrocarbons included bituminous oil stains in centimetre-scale vugs within the Cambrian Georgina Basin and several oil bleeds within the Proterozoic section. The latter also contains surface gas with up to 2% methane concentrations measured within carbonaceous mudstones. Geochemical analyses of hydrocarbon shows highlight the occurrence of several petroleum systems operating in this frontier region. The results at NDI Carrara 1 offer the promise of a new exciting resource province in northern Australia.

  • This web service provides access to satellite imagery products for the identification of potential groundwater dependent ecosystems (GDEs) in the South Nicholson - Georgina region.

  • This record presents nine new Sensitive High Resolution Ion Micro Probe (SHRIMP) U–Pb zircon results obtained under the auspices of the Exploring for the Future (EFTF) Programme, a four year, federally funded initiative to better understand the mineral, energy and groundwater potential of northern Australia. The results presented here are derived from eight sedimentary samples and one probable tuffaceous sample together belonging to the Mount Isa Province, South Nicholson Basin and Georgina Basin.

  • Proterozoic rocks of the South Nicholson region are juxtaposed between the Mount Isa Province and the McArthur Basin. Whereas the latter two provinces are well-studied and prospective for energy and mineral resources, the geological evolution and resource potential of the South Nicholson region is not well understood. Geoscience Australia, under the Exploring for the Future (EFTF) initiative, in collaboration with State and Territory Geological Surveys, conducted a range of regional geoscience investigations to better understand the resource potential across the South Nicholson region to encourage greenfield resource exploration. Here we discuss preliminary findings on an unreported massive manganese oxide (MnO) occurrence in the Carrara Range in the South Nicholson region, north-eastern Northern Territory. The occurrence is hosted by a north-dipping quartz sandstone unit of the ca. 1640 Ma) sandstones of the Plain Creek Formation (McNamara Group), in the hanging wall of the south-verging, east-west trending Wild Cow Fault zone. The Plain Creek Formation conformably overlies the Shady Bore Quartzite, and conformably underlies shales and carbonaceous siltstones of the Lawn Hill Formation. The Plain Creek Formation is stratigraphically equivalent to the Riversleigh Siltstone in the Lawn Hill Platform. The massive MnO body is comprised of pyrolusite (MnO2) and cryptomelane (KMn8O16), surrounded by a halo of partially MnO altered host sandstone, crosscut by numerous 1‒5mm wide ‘feeder’ veinlets. These zoned veinlets consist of quartz, pyrolusite and cryptomelane with wall quartz projecting into the veinlets with Mn minerals infilling the centre of the veins. The MnO body is ~20 m wide across strike. The lateral and depth extent of the occurrence is unknown, but satellite imagery indicates that MnO mineralisation is visible, along strike, for at least several hundred metres. These observations suggest that the Carrara Range MnO occurrence is likely an epigenetic replacement stratiform body. Geochemistry on the MnO body return 49.8 wt% MnO with appreciable (ca. 450 ppm) Zn; the host sandstone return 10.8 wt% MnO and ca. 25 ppm Zn. Reconnaissance fluid inclusion analysis on quartz-MnO veinlets reveals both brine+vapour aqueous inclusions and hydrocarbon+vapour inclusions. Co-existing aqueous and hydrocarbon were not observed. Homogenisation temperatures are 90‒180°C for aqueous inclusions and 60‒140°C for hydrocarbon inclusions. Fluid salinities are 10‒23 wt% (NaCl equivalent), which may suggest interaction with evaporites. Decrepitation of the fluid inclusions yielded CO2 with no accompanying hydrocarbon gases, suggesting an oxidising fluid. The 𝛿13C CO2 of -22 ‰ is consistent with an organic source, possibly from oil oxidation. The mineralising fluids were high salinity, low temperature (ca. 120°C) fluids, typical of fluids for Mississippi-Valley and/or Mount Isa style base-metal deposits. The host Plain Creek Formation is stratigraphically equivalent to units that host world-class regional Pb-Zn deposits such as Century, McArthur River (HYC) and Lady Loretta and others of north-western Queensland and north-eastern Northern Territory. This correlation, together with the knowledge that many Pb-Zn deposits across the region are associated with manganese enrichment, increases the potential of a base metal resource in the South Nicholson region. Discovery of the Carrara Range Mn occurrence may stimulate regional base metal exploration. Abstract presented at the 2021 Australian Earth Sciences Convention (AESC)

  • The South Nicholson Basin and immediate surrounding region are situated between the Paleo- to Mesoproterozoic Mount Isa Province and McArthur Basin. Both the Mount Isa Province and the McArthur Basin are well studied; both regions host major base metal mineral deposits, and contain units prospective for hydrocarbons. In contrast, the South Nicholson Basin contains rocks that are mostly undercover, for which the basin evolution and resource potential are not well understood. To address this knowledge gap, the L210 South Nicholson Seismic Survey was acquired in 2017 in the region between the southern McArthur Basin and the western Mount Isa Province, crossing the South Nicholson Basin and Murphy Province. The primary aim of the survey was to investigate areas with low measured gravity responses (‘gravity lows’) in the region to determine whether they represent thick basin sequences, as is the case for the nearby Beetaloo Sub-basin. Key outcomes of the seismic acquisition and interpretation include (1) expanded extent of the South Nicholson Basin; (2) identification of the Carrara Sub-basin, a new basin element that coincides with a gravity low; (3) linkage between prospective stratigraphy of the Isa Superbasin (Lawn Hill Formation and Riversleigh Siltstone) and the Carrara Sub-basin; and (4) extension of the interpreted extent of the Mount Isa Province into the Northern Territory. <b>Citation:</b> Carr, L.K., Southby, C., Henson, P., Anderson, J.R., Costelloe, R., Jarrett, A.J.M., Carson, C.J., MacFarlane, S.K., Gorton, J., Hutton, L., Troup, A., Williams, B., Khider, K., Bailey, A.H.E. and Fomin, T., 2020. South Nicholson Basin seismic interpretation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.