From 1 - 10 / 59
  • The South Nicholson Basin and immediate surrounding region are situated between the Paleo- to Mesoproterozoic Mount Isa Province and McArthur Basin. Both the Mount Isa Province and the McArthur Basin are well studied; both regions host major base metal mineral deposits, and contain units prospective for hydrocarbons. In contrast, the South Nicholson Basin contains rocks that are mostly undercover, for which the basin evolution and resource potential are not well understood. To address this knowledge gap, the L210 South Nicholson Seismic Survey was acquired in 2017 in the region between the southern McArthur Basin and the western Mount Isa Province, crossing the South Nicholson Basin and Murphy Province. The primary aim of the survey was to investigate areas with low measured gravity responses (‘gravity lows’) in the region to determine whether they represent thick basin sequences, as is the case for the nearby Beetaloo Sub-basin. Key outcomes of the seismic acquisition and interpretation include (1) expanded extent of the South Nicholson Basin; (2) identification of the Carrara Sub-basin, a new basin element that coincides with a gravity low; (3) linkage between prospective stratigraphy of the Isa Superbasin (Lawn Hill Formation and Riversleigh Siltstone) and the Carrara Sub-basin; and (4) extension of the interpreted extent of the Mount Isa Province into the Northern Territory. <b>Citation:</b> Carr, L.K., Southby, C., Henson, P., Anderson, J.R., Costelloe, R., Jarrett, A.J.M., Carson, C.J., MacFarlane, S.K., Gorton, J., Hutton, L., Troup, A., Williams, B., Khider, K., Bailey, A.H.E. and Fomin, T., 2020. South Nicholson Basin seismic interpretation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <p>Exploring for the Future (EFTF) is a four year $100.5 million initiative by the Australian Government that aims to boost northern Australia's attractiveness as a destination for investment in resource exploration. As part of this program, Geoscience Australia has been tasked with gathering new pre-competitive data and information concerning potential mineral, energy and groundwater resources concealed beneath the surface, on an unprecedented scale. To ensure the program has the greatest impact Geoscience Australia will use innovative techniques in greenfield areas where the resource potential is completely unknown at a semi-continental scale. <p>A major EFTF output is the acquisition of deep crustal seismic reflection data. The first tranche of this was completed in early August 2017 in the region between the southern McArthur Basin to the Mt Isa western succession, crossing the South Nicholson Basin and Murphy Province. Prior to this survey, the region contained no seismic data and minimal well data. <p>This new seismic data will support exploration activities by providing a better understanding of the basin and basement architecture and structural evolution of the region, and assist in identifying geological terrains with resource potential. The preliminary processed data was released at the Annual Geoscience Exploration Seminar in March 2018 (Henson et al., 2018). This record presents the interpreted data alongside a geological summary of the region including the McArthur Basin, South Nicholson Basin and Mount Isa Orogen and provides a baseline for further studies in the region including the identification of a new sub-basin and presentation of current knowledge of the stratigraphy and geochemistry. <p>The new seismic reflection data acquired over the South Nicholson Basin as part of the Exploring for the Future program has outlined many areas of future opportunity. Geoscience Australia is currently pursuing an exciting program building upon previous work in the region, including extensive geochemical and geochronological studies aiming to build a greater understanding of the stratigraphy imaged by the seismic data. Further, our work in this region has already demonstrated the complicated and poorly understood nature of the stratigraphy and structural relationships within the region.

  • The Mesoproterozoic South Nicholson Basin sits between, and overlies, the Paleoproterozoic Mount Isa Province to the east and the southern McArthur Basin to the northwest. The McArthur Basin and Mount Isa Province are well studied and highly prospective for both mineral and energy resources. In contrast, rocks in the South Nicholson region (incorporating the Mount Isa Province, the Lawn Hill Platform and the South Nicholson Basin, and geographically straddling the Northern Territory and Queensland border) are mostly undercover, little studied and consequently relatively poorly understood. A comprehensive U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon and xenotime geochronology program was undertaken to better understand the stratigraphy of the South Nicholson region and its relationship to the adjacent, more overtly prospective Mount Isa Province and McArthur Basin. The age data indicate that South Nicholson Basin deposition commenced ca. 1483 Ma, with cessation at least by ca. 1266 Ma. The latter age, based on U-Pb xenotime, is interpreted as the timing of postdiagenetic regional fluid flow. The geochronology presented here provides the first direct age data confirming that the South Nicholson Group is broadly contemporaneous with the Roper Group of the McArthur Basin. Some rocks, mapped previously as Mesoproterozoic South Nicholson Group and comprising proximal, immature lithofacies, have detrital spectra consistent with that of the late Paleoproterozoic McNamara Group of the western Mount Isa Province; this will necessitate a revision of existing regional stratigraphic relationships. The stratigraphic revisions and correlations proposed here significantly expand the extent of highly prospective late Paleoproterozoic stratigraphy across the South Nicholson region, which, possibly, extends even further west beneath the Georgina and Carpentaria basins. Our data and conclusions allow improved regional stratigraphic correlations between Proterozoic basins, improved commodity prospectivity and targeted exploration strategies across northern Australia. <b>Citation:</b> Carson, C.J., Kositcin, N., Anderson, J.R., Cross, A. and Henson, P.A., 2020. New U–Pb geochronology for the South Nicholson region and implications for stratigraphic correlations.. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • This Record presents twelve new zircon U-Pb geochronological results from the South Nicholson region, conducted on Geoscience Australia’s Sensitive High Resolution Ion Micro Probe (SHRIMP), as part of the Commonwealth Government’s Exploring for the Future (EFTF) program, an initiative to better understand the mineral, energy and groundwater potential of northern Australia. These data will facilitate greater understanding of the geological evolution of the South Nicholson region, a vast and underexplored region extending across north-eastern Northern Territory and far north-western Queensland. Samples were collected from across the South Nicholson region including MOUNT DRUMMOND, CALVERT HILLS, BRUNETTE DOWNS (NT), LAWN HILL and CAMOOWEAL (QLD) 250K mapsheets. Four samples are from outcrop and eight samples from six stratigraphic and exploration drillholes. Samples were collected from the Paleoproterozoic Murphy Province and from overlying successions of the Paleoproterozoic Benmara Group and the Mesoproterozoic South Nicholson Group. Several samples from drillholes, have stratigraphic affinities that are uncertain and speculative.

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a newly discovered Proterozoic depocentre in the South Nicholson region, based on interpretation from new seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1751 m. Geoscience Australia conducted an extensive post-drilling analytical program that generated over 30 datasets which the interested reader can find under the EFTF webpage (under the "Data and publications" drop down menu) at https://www.eftf.ga.gov.au/south-nicholson-national-drilling-initiative This record links to the Exploring for the Future 'borehole completion report' for NDI Carrara 1 and access to all on-site downhole geophysical datasets.

  • Exploring for the Future (EFTF) is an ongoing multiyear initiative by the Australian Government, conducted by Geoscience Australia, in partnership with state and Northern Territory government agencies and other partner research institutes. The first phase of the EFTF program (2016-2020) aimed to improve Australia’s desirability for industry investment in resource exploration in frontier or ‘greenfield’ regions across northern Australia. As part of the program, Geoscience Australia employed a range of both established and innovative techniques to gather new precompetitive data and information to develop new insight into the energy, mineral and groundwater resource potential across northern Australia. To maximise impact and to stimulate industry exploration activity, Geoscience Australia focussed activities in greenfield areas where understanding of resource potential was limited. In order to address this overarching objective under the EFTF program, Geoscience Australia led acquisition of two deep crustal reflection seismic surveys in the South Nicholson region, an understudied area of little previous seismic data, straddling north-eastern Northern Territory and north-western Queensland. The first survey, L210 South Nicholson 2D Deep Crustal Seismic Survey acquired in 2017, consisted of five overlapping seismic lines (17GA-SN1 to SN5), totalling ~1100 line-km. Survey L210 linked directly into legacy Geoscience Australia seismic lines (06GA-M1 and 06GA-M2) in the vicinity of the world-class Pb-Zn Century Mine in Queensland. The results from survey L210 profoundly revised our geological understanding of the South Nicholson region, and led to the key discovery of an extensive sag basin, the Carrara Sub-basin, containing highly prospective late Paleoproterozoic to Mesoproterozoic rocks with strong affinities with the adjacent Mount Isa Province and Lawn Hill Platform. To complement and expand on the outstanding success of the South Nicholson survey and to continue to explore the resource potential across the underexplored and mostly undercover South Nicholson and Barkly regions, a second seismic survey was acquired in late 2019, the Barkly 2D reflection survey (L212). The Barkly seismic survey comprises five intersecting lines (19GA-B1 to B5), totalling ~813 line-km, extending from the NT-QLD border in the south-east, near Camooweal, to the highly prospective Beetaloo Sub-basin in the north-west. The survey ties into the South Nicholson survey (L210), the recently acquired Camooweal 2D reflection seismic survey by the Geological Survey of Queensland and industry 2D seismic in the Beetaloo Sub-basin, leveraging on and maximising the scientific value and impact on all surveys. The Barkly reflection seismic data images the south-western margin of the Carrara Sub-basin and identified additional previously unrecognised, structurally-disrupted basins of Proterozoic strata, bounded by broadly northeast trending basement highs. Critically, the survey demonstrates the stratigraphic continuity of highly prospective Proterozoic strata from the Beetaloo Sub-basin into these newly discovered, but as yet unevaluated, concealed basins and into the Carrara Sub-basin, further attesting to the regions outstanding potential for mineral and hydrocarbon resources. This survey, in concert with the South Nicholson seismic survey and other complementary EFTF funded regional geochemical, geochronology and geophysical data acquisition surveys, significantly improves our understanding of the geological evolution, basin architecture and the resource potential of this previously sparsely studied region.

  • Seismic reflection mapping, geochemical analyses and petroleum systems modelling have increased our understanding of the highly prospective Mesoproterozoic and Paleoproterozoic source rocks across northern Australia, expanding the repertoire of exploration targets currently being exploited in Proterozoic petroleum systems. Data collected during the Exploring for the Future program have enabled us to redefine and increase the extent of regional petroleum systems, which will encourage additional interest and exploration activity in frontier regions. Here, we present a review of the Paleoproterozoic McArthur and Mesoproterozoic Urapungan petroleum supersystems, and the most up-to-date interpretation of burial and thermal history modelling in the greater McArthur Basin (including the Beetaloo Sub-basin), South Nicholson Basin and Isa Superbasin. We also present potential direct hydrocarbon indicators imaged in the 2017 South Nicholson Deep Crustal Seismic Survey that increase the attractiveness of this frontier region for hydrocarbon exploration activities. <b>Citation:</b> MacFarlane, S.K., Jarrett, A.J.M., Hall, L.S., Edwards, D., Palu, T.J., Close, D., Troup, A. and Henson, P., 2020. A regional perspective of the Paleo- and Mesoproterozoic petroleum systems of northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Exploring for the Future Program (EFTF) is a $100.5 million four year, federally funded initiative to better characterise the mineral, energy and groundwater potential of northern Australia. A key focus area of the initiative is the South Nicholson region, situated across the Northern Territory and Queensland border. The South Nicholson region is located between two highly prospective provinces, the greater McArthur Basin in the Northern Territory, the Lawn Hill Platform and the Mount Isa Province in Queensland–Northern Territory, which both have demonstrated hydrocarbon and base metal resources. In contrast, the South Nicholson region is not well understood geologically, is mostly undercover with limited well data, and prior to EFTF contained limited seismic coverage. Re–Os analyses in this study were undertaken to complement seismic data, U–Pb geochronology and geochemistry data to better understand the geological evolution and resource potential of the South Nicholson region. Five organic carbon bearing sedimentary samples from drillholes BMR Ranken 1, NTGS00/1, DDH 83/1 and DDH 83/4 located across the South Nicholson region were analysed for whole rock Re–Os. The aim of the analyses was to better constrain the depositional age of basin units in the region, and to potentially provide insights into the timing of post-depositional processes such as fluid events and hydrocarbon generation and/or migration. Samples belong to the Mesoproterozoic South Nicholson Group, Paleoproterozoic Fickling and McNamara groups, and the Neoproterozoic to Devonian Georgina Basin. Samples were analysed at the University of Alberta, Canada.

  • <div>This study investigates the feasibility of mapping potential groundwater dependent vegetation (GDV) at a regional scale using remote sensing data. Specifically, the Digital Earth Australia (DEA) Tasseled Cap Percentiles products, integrated with the coefficient of greenness and/or wetness, are applied in three case study regions in Australia to identify and characterise potential terrestrial and aquatic groundwater dependent ecosystems (GDE). The identified high potential GDE are consistent with existing GDE mapping, providing confidence in the methodology developed. The approach provides a consistent and rapid first-pass approach for identifying and assessing GDEs, especially in remote areas of Australia lacking detailed GDE and vegetation information.</div>

  • <div>NDI Carrara 1 is a 1750 m stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia under the Exploring for the Future program and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-basin, a recently discovered depocentre in the South Nicholson region. The drill hole intersected Cambrian and Proterozoic sediments consisting of organic-rich black shales and a thick sequence of interbedded black shales and silty sandstones with hydrocarbon shows. A comprehensive analytical program carried out by Geoscience Australia on the recovered core samples from 283 m to total depth at 1751&nbsp;m provides critical data for calibration of burial and thermal history modelling.</div><div>Using data from this drilling campaign, burial and thermal history modelling was undertaken to provide an estimate of the time-temperature maxima that the sub-basin has experienced, contributing to an understanding of hydrocarbon maturity. Proxy kerogen kinetics are assessed to estimate the petroleum prospectivity of the sub-basin and attempt to understand the timing and nature of hydrocarbon generation. Combined, these newly modelled data provide insights into the resource potential of this frontier Proterozoic hydrocarbon province, delivering foundational data to support explorers across the eastern Northern Territory and northwest Queensland.</div> <b>Citation:</b> Palu Tehani J., Grosjean Emmanuelle, Wang Liuqi, Boreham Christopher J., Bailey Adam H. E. (2023) Thermal history of the Carrara Sub-basin: insights from modelling of the NDI Carrara 1 drill hole. <i>The APPEA Journal</i><b> 63</b>, S263-S268. https://doi.org/10.1071/AJ22048