From 1 - 10 / 28
  • With a population of over 250 million people, Indonesia is the fourth most populous country in the world (United Nations, 2013). Indonesia also experiences more earthquakes than any other country in the world (USGS, 2015). Its borders encompass one of the most active tectonic regions on Earth including over 18 000 km of major tectonic plate boundary, more than twice that of Japan or Papua New Guinea (Bird, 2003). The potential for this tectonic activity to impact large populations has been tragically demonstrated by the 20004 Sumatra earthquake and tsunami. In order to inform earthquake risk reduction in Indonesia, a new national earthquake hazard map was developed in 2010 (Irsyam et al., 2010). In this report historical records of damaging earthquakes from the 17th to 19th centuries are used to test our current understanding of earthquake hazard in Indonesia and identify areas where further research is needed. In this report we address the following questions: - How well does our current understanding of earthquake hazard in Indonesia reflect historical activity? - Can we associate major historical earthquakes with known active faults, and are these accounted for in current assessments of earthquake hazard? - Does the current earthquake hazard map predict a frequency and intensity of shaking commensurate with the historical record? - What would the impact of these historical earthquakes be if they were to reoccur today? To help answer questions like these, this report collates historical observations of eight large earthquakes from Java, Bali and Nusa Tenggara between 1699 and 1867. These observations are then used to: - Identify plausible sources for each event; - Develop ground shaking models using the OpenQuake Engine (GEM Foundation, 2015); - Assess the validity of the current national seismic hazard map; and - Estimate fatalities were the historical events to occur today using the InaSAFE (InaSAFE.org, 2015) software.

  • Probabilistic seismic hazard map of Papua New Guinea, in terms of Peak Ground Acceleration, is developed for return period of 475 years. The calculations were performed for bedrock site conditions (Vs30=760 m/s). Logic-tree framework is applied to include epistemic uncertainty in seismic source as well as ground-motion modelling processes. In this regard two source models, using area source zones and smoothed seismicity, are developed. Based on available geological and seismological data, defined seismic sources are classified into 4 different tectonic environments. For each of the tectonic regimes three Ground Motion Prediction Equations are selected and used to estimate the ground motions at a grid of sites with spacing of 0.1 degree in latitude and longitude. Results show high level of hazard in the coastal areas of Huon Peninsula and New Britain/ Bougainville regions and relatively low level of hazard in the southern part of the New Guinea highlands block. In Huon Peninsula, as shown by seismic hazard disaggregation results, high level of hazard is caused by modelled frequent moderate to large earthquakes occurring at Ramu-Markham Fault zone. On the other hand in New Britain/Bougainville region, the geometry and distance to the subduction zone along New Britain Trench mainly controls the calculated level of hazard. It is also shown that estimated level of PGAs is very sensitive to the selection of GMPEs and overall the results are closer to the results from studies using more recent ground-motion models.

  • Probabilistic earthquake hazard maps were prepared for the Fiji Islands. Damage has been caused by Fiji earthquakes around 1850, in 1884, 1902, 1919, 1932 (twice), 1953 and 1979. No previous assessment had produced a comprehensive description of the earthquake hazard in Fiji and the present study was initiated in 1990 when the author was attached to the Mineral Resources Department, Fiji. Collection and analysis of data continued at MRD until 1992 and the study was completed at the Australian Geological Survey Organisation in 1993-1997. The aim of the study was to produce probabilistic earthquake hazard maps which can be used in the National Building Code for Fiji, for design of special structures, for planning, for emergency management and for risk management. Few, if any, similar studies have been undertaken in the seismically active Southwest Pacific.

  • On the 30th September 2009 a magnitude 7.6 earthquake struck West Sumatra in the Padang and Pariaman regions. It caused widespread damage to buildings and resulted and an estimated 1,117 fatalities. Thankfully the event was not accompanied by a tsunami that could have had additional devastating impacts and a greatly increased mortality. Under its mandate the AIFDR responded to the earthquake event with the objective of deriving an understanding of the factors that had contributed to outcome. It supported a team of Indonesian and international engineers and scientists who collected and analysed damage information that could subsequently be used for future disaster risk reduction in West Sumatra and Indonesia more broadly. The activity was jointly led by the Centre for Disaster Mitigation at the Institut Teknologi Bandung (ITB) and Geoscience Australia. This report provides a background to the region, describes the nature of the earthquake and its impacts, details the survey activity and outlines the significant outcomes that has come from it. Importantly, it makes several recommendations to assist in the regional reconstruction after the event and to guide future development in the Padang region and Indonesia more generally.

  • Indonesia is located in one of the most seismically active regions in the world and often experiences damaging earthquakes. In the past the housing sector has sustained more damage and losses than other sectors due to earthquakes. This is often attributed to the fact that the most common houses in Indonesia are non-engineered, built with poor quality workmanship, poor quality materials and without resilient seismic design features. However little effort has been made to quantify how fragile these houses are, or how the fragility of these houses may vary according to location or wealth. It is not possible to derive empirical fragility functions for Indonesia due to insufficient damage data. The aim of this study is to determine whether existing earthquake fragility functions can be used for common houses in Indonesia. Scenario damage analyses were undertaken several times using different sets of fragility functions for the 2006 Yogyakarta and 2009 Padang events. The simulated damage results were then compared to the damage observed post event to determine whether an accurate damage prediction could be achieved. It was found that the common houses in Yogyakarta and Central Java vary according to age, location and wealth and can be reasonably well represented by existing fragility functions. However, the houses in Padang and surrounding West Sumatra did not vary in a predictable manner and are more fragile than anticipated. Therefore, the fragility of the most common houses in Indonesia is not uniform across the country. This has important implications for seismic damage and risk assessment undertaken in Indonesia. <b>Citation:</b> Weber, R., Cummins, P. & Edwards, M. Fragility of Indonesian houses: scenario damage analysis of the 2006 Yogyakarta and 2009 Padang earthquakes. <i>Bull Earthquake Eng</i> (2024). https://doi.org/10.1007/s10518-024-01930-z

  • The Assessment of Tropical Cyclone Risks in the Pacific Region project represents a collaboration between DIICCSRTE and Geoscience Australia with PCRAFI and AIR Worldwide. Building on the expertise of each organisation, the project will deliver an assessment of the financial risks to buildings, infrastructure and agriculture arising from tropical cyclones (TCs) under current and future climate regimes. This extends previous risk assessments undertaken by incorporating the influence of climate change on the hazard (TCs) into the assessment process. The output of this study is a set of peril matrices, which detail the relative change in parameters describing TC behaviour: e.g. annual mean frequency, mean maximum intensity and mean latitude of genesis. The relative changes are evaluated as the fractional change between TC behavior in current climate GCM simulations and future climate GCM simulations.

  • Historical reports of earthquake effects from the period 1681 to 1877 in Java, Bali and Nusa Tenggara are used to independently test ground motion predictions in Indonesia’s 2010 national probabilistic seismic hazard assessment (PSHA). Assuming that strong ground motion occurrence follows a Poisson distribution, we cannot reject Indonesia’s current PSHA for key cities in Java at 95% confidence. However, the results do suggest that seismic hazard may be underestimated for the megacity Jakarta. Ground motion simulations for individual large damaging events are used to identify plausible source mechanisms, providing insights into the major sources of earthquake hazard in the region and possible maximum magnitudes for these sources. The results demonstrate that large intraslab earthquakes have been responsible for major earthquake disasters in Java, including a ~Mw 7.5 intraslab earthquake near Jakarta in 1699 and a ~Mw 7.8 event in 1867 in Central Java. The results also highlight the potential for large earthquakes to occur on the Flores Thrust. We require an earthquake with Mw 8.4 on the Flores Thrust to reproduce tsunami observation from Sulawesi and Sumbawa in 1820. Furthermore, large shallow earthquakes (Mw > 6) have occurred in regions where active faults have not been mapped identifying the need for further research to identify and characterize these faults for future seismic hazard assessments. <b>Citation:</b> Jonathan Griffin, Ngoc Nguyen, Phil Cummins, Athanasius Cipta; Historical Earthquakes of the Eastern Sunda Arc: Source Mechanisms and Intensity‐Based Testing of Indonesia’s National Seismic Hazard Assessment. <i>Bulletin of the Seismological Society of America </i>2018; 109 (1): 43–65. doi: https://doi.org/10.1785/0120180085

  • Tsunami hazard maps are generated for the Mentawai Islands, West Sumatra, Indonesia, to support evacuation and disaster response planning. A random heterogeneous slip generator is used to forward model a suite of earthquake rupture scenarios on the Mentawai Segment of the Sunda Subduction Zone. A total of 1000 rupture models that fit constraints provided by coral and geodetic records of coseismic vertical deformation from great earthquakes in 1797, 1833 and 2007 are used to model inundation and define a maximum inundation zone that envelopes all of these scenarios. Results are compared with single scenario hazard assessments developed by experts and agreed through scientific consensus building processes to assess the additional value of modelling a suite of scenarios to obtain a more robust estimate of potential inundated areas by incorporating uncertainty in the earthquake source. The model presented here, like all tsunami hazard assessments, is based on assumptions about the characteristics of future events based on past events, however by sampling a range of plausible outcomes we gain a more robust estimate of which areas may be inundated during a tsunami within the bounds of our assumptions.

  • Natural Hazards and Earth Systems Science

  • The Philippine archipalego is tectonically complex and seismically hazardous, yet few seismic hazard assessments have provided national coverage. This paper presents an updated probabilistic seismic hazard analysis for the nation. Active shallow crustal seismicity is modeled by faults and gridded point sources accounting for spatially variable occurrence rates. Subduction interfaces are modelled with faults of complex geometry. Intraslab seismicity is modeled by ruptures filling the slab volume. Source geometries and earthquake rates are derived from seismicity catalogs, geophysical datasets, and historic-to-paleoseismic constraints on fault slip rates. The ground motion characterization includes models designed for global use, with partial constraint by residual analysis. Shallow crustal faulting near metropolitan Manila, Davao, and Cebu dominates shaking hazard. In a few places, peak ground acceleration with 10% probability of exceedance in 50 years on rock reaches 1.0 g. The results of this study may assist in calculating the design base shear in the National Structural Code of the Philippines.