From 1 - 10 / 18
  • This report provides an initial summary of the hydrogeochemistry of the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) of the Upper Burdekin Region of North Queensland, completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. Groundwater hydrogeochemistry studies can improve system understanding by reflecting host formation compositions and groundwater processes. These studies also provide regional baseline groundwater datasets that can inform environmental monitoring, resource use and decision making. During 2017 and 2018 Geoscience Australia collected 38 groundwater samples and 80 surface water samples (including quality control samples) to evaluate groundwater system processes including potential flow paths, recharge and groundwater-surface water-interactions. These surveys were conducted across three months of fieldwork, sampling water for a comprehensive suite of hydrogeochemical parameters. The present report includes surface water and groundwater data and information on: 1) sampling sites; 2) field physicochemical parameters (EC, pH, Eh, DO and T); 3) field measurements of total alkalinity (HCO3-); 4) laboratory results of major anion and cation results; 5) laboratory results for isotopes of water (δ18O and δD), DIC (δ13C), and dissolved strontium (87Sr/86Sr); and 6) hydrogeochemical maps representing the spatial distribution of these parameters. Pending analyses include: CFCs, SF6 and radiogenic isotopes δ14C and δ36Cl. Analysis that were largely below detection limit include: trace element concentrations, dissolved sulfide (S2-), ferrous iron (Fe2+), and dissolved sulfate (affecting sampling of δ34S and δ18O). This study demonstrates that hydrogeochemistry surveys, with full suites of chemical parameters including isotopes, can reveal fundamental groundwater system processes such as groundwater flow paths, groundwater recharge and groundwater-surface water interactions. The chemical ‘fingerprints’ identified here indicate groundwater flow paths are largely restricted to within the MBP and NBP aquifers, which have little interaction with adjacent and underlying non-basaltic rocks. The results also indicate groundwater is largely recharged from rainfall in higher elevations of the basalt provinces, with variable rainfall inputs to groundwater from lower elevation and rivers along flow paths. Groundwater-surface water interactions show several chemical signatures linking groundwater to springs, tributary rivers and the Burdekin River. Results from the Upper Burdekin Hydrogeochemistry Survey for the MBP and NBP have been plotted and mapped with initial interpretations presented below. Further detailed interpretation of this hydrogeochemistry data will be the focus of future publications. This data release is part in a series of staged outputs from the EFTF program. Relevant data, information and images are available through the Geoscience Australia website.

  • This dataset includes point estimates of groundwater recharge in mm/year. Recharge rates have been estimated at monitoring bore locations in the basaltic aquifers of the Nulla and McBride basalt provinces. Recharge estimates have been calculated using the “chloride mass balance” method. The chloride mass balance process assumes that the chloride ion is a conservative tracer in precipitation, evapotranspiration, recharge and runoff; and that all the chloride is from rainfall, instead of for example halite saturation or dissolution processes. So the volumetric water balance and the flux of chloride balance must both be true. Assuming that runoff and evapotranspiration are negligible (so approximated by zero), the equation is simplified: Water balance P=ET+R+Q Water balance multiplied by chloride concentrations (chloridefluxbalance) P∙Cl_ppt=ET∙Cl_ET+R∙Cl_gw+Q∙Cl_riv | ΔCl_reac≈0 Assumptions to simplify equation P∙Cl_ppt=R∙Cl_gw | Q≈0 & ET≈0 Rearranging for recharge rate (unknown) R=P∙(Cl_ppt)/(Cl_gw ) | Q≈0 & ET≈0 Where P = precipitation rate; ET = evapotranspiration rate; R = recharge rate; Q = runoff to streams; Clppt = concentration of Cl in precipitation; ClET = concentration of chloride in evapotranspiration; Clgw = concentration of Cl in groundwater; Clriv = concentration of chloride in river runoff; ΔClreac = change in chloride concentrations from reactions.

  • <p>The outcrop extent of the Nulla Basalt Province, selected from the Queensland Detailed Surface Geology vector polygon mapping, March 2017. <p>© State of Queensland (Department of Natural Resources and Mines) 2017 Creative Commons Attribution

  • This grid dataset is an estimation of the relative surface potential for recharge within the Nulla Basalt Province. This process combined numerous factors together as to highlight the areas likely to have higher potential for recharge to occur. Soil permeability and surface geology are the primary inputs. Vegetation and slope were excluded from consideration, as these were considered to add too much complexity. Furthermore, this model does not include rainfall intensity – although this is known to vary spatially through average rainfall grids, this model is a depiction of the ground ability for recharge to occur should a significant rainfall event occur in each location. The relative surface potential recharge presented is estimated through a combination of soil and geological factors, weighting regions that are considered likely to have greater potential for recharge (e.g. younger basalts, vent-proximal facies, and highly permeable soils). Near-surface permeability of soil layers has been considered as a quantified input to the ability for water to infiltrate soil strata. It was hypothesised that locations proximal to volcanic vents would be preferential recharge sites, due to deeply penetrative columnar jointing. This suggestion is based on observations in South Iceland, where fully-penetrating columnar joint sets are more prevalent in proximal facies compared to distal facies in South Iceland (Bergh & Sigvaldson 1991). To incorporate this concept, preferential recharge sites are assumed to be within the polygons of vent-proximal facies as derived from detailed geological mapping datasets. Remaining geology has been categorised to provide higher potential recharge through younger lava flows. As such, a ranking between geological units has been used to provide the variation in potential recharge estimates. <b>Reference</b> Bergh, S. G., & Sigvaldason, G. E. (1991). Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, South Iceland. Bulletin of Volcanology, 53(8), 597-611. doi:10.1007/bf00493688

  • The Upper Burdekin Basalt extents web service delivers province extents, detailed geology, spring locations and inferred regional groundwater contours for the formations of the Nulla and McBride Basalts. This work has been carried out as part of Geoscience Australia's Exploring for the Future program.

  • <p>Summary <p>Spring point locations compiled for the Nulla Basalt Province <p>A compilation of spring locations as identified through various methods, including existing Queensland Springs Database, topographic mapping, fieldwork visits, landholder citizen scientist mapping, and inspection for neighbouring similar features in Google Earth. This compilation has had locations adjusted through inspecting visible imagery and elevation data to identify the likely positions of springs at higher resolution.

  • <p>This is a raster representing the base surface of the Nulla Basalt Province, inferred from sparse data available, dominated by private water bore records. This interpretation was conducted by a hydrogeologist from Geoscience Australia. <p>Caveats <p>• This is just one model, based on sparse data and considerable palaeotopographic interpretation <p>• This model relies on the input datasets being accurate. However it is noted that substantial uncertainty exists both in the location of private bores and the use of drillers’ logs for identifying stratigraphic contacts. <p>• The location of palaeothalwegs is imprecise, and often it is only indicative of the presence of a palaeovalley. <p>• The purpose of this model is for visualisation purposes, so should not be considered a definitive depth prediction dataset.

  • This web service provides access to groundwater raster products for the Upper Burdekin region, including: inferred relative groundwater recharge potential derived from weightings assigned to qualitative estimates of relative permeability based on mapped soil type and surface geology; Normalised Difference Vegetation Index (NDVI) used to map vegetation with potential access to groundwater in the basalt provinces, and; base surfaces of basalt inferred from sparse available data.

  • The capture and processing of aerial lidar and coincident imagery products is required for the Nulla Basalt Geological Province in the upper Burdekin catchment of north Queensland. The Nulla Basalt Province project is the second of a series of high resolution elevation data acquisition projects required to support Geoscience Australia’s Exploring for the Future programme focussed on northern Australia. Products created in the project will primarily be used for high precision modelling of surface water movement across the landscape, identification of potential interactions with ground water resources in the region and modelling of structural geology from subtle surface expression of fault line steps indicative of historical seismic events.

  • This data release contains accurate positional data for groundwater boreholes in terms of horizontal location as well as elevation of the top of casing protectors. Twenty-four boreholes located in the Nulla and McBride basalt provinces have had DGPS survey results compiled and are presented. Using 95% confidence intervals, the horizontal uncertainties are less than 1.2m and vertical uncertainties less than 0.9m. These results are a substantial improvement, particularly on the uncertainty of elevations, and as such allow water levels need to be compared between bores on a comparable datum, to enable a regional hydrogeological understanding. Quantifying the uncertainties in elevation data adds robustness to the analysis of water levels across the region rather than detracting from it.