From 1 - 10 / 27
  • The Milcarpa 1 borehole was drilled approximately 9 km SSE of Hungerford, Queensland, adjacent to the road between Hungerford and Wanaaring, NSW. The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates.

  • The Tongo 1 borehole was drilled approximately 83 km NE of White Cliffs, New South Wales. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.

  • The Congararra 1 borehole was drilled approximately 70 km NNW of Bourke, NSW. The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates.

  • The Laurelvale 1 borehole was drilled approximately 78 km SSW of Wanaaring, New South Wales, adjacent to the through-road between Tongo and Tilpa. The borehole was designed to test the geology of indistinct, linear aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates.

  • Exploring for the Future (EFTF) is a multiyear (2016–2024) initiative of the Australian Government, conducted by Geoscience Australia. This program aims to improve Australia’s desirability for industry investment in resource exploration of frontier regions across Australia. This paper will focus on the science impacts from the EFTF program in northern Australia derived from the acquisition and interpretation of seismic surveys, the drilling of the NDI Carrara 1 and also complementary scientific analysis and interpretation to determine the resource potential of the region. This work was undertaken in collaboration with the Northern Territory Geological Survey, the Queensland Geological Survey, AuScope and the MinEx CRC. These new data link the highly prospective resource rich areas of the McArthur Basin and Mt Isa Province via a continuous seismic traverse across central northern Australia. The Exploring for the Future program aims to further de-risk exploration within greenfield regions and position northern Australia for future exploration investment. [Carr] The Sherbrook Supersequence is the youngest of four Cretaceous supersequences in the Otway Basin and was deposited during a phase of crustal extension. This presentation shows how a basin-scale gross depositional environment (GDE) map for the Sherbrook SS was constructed, the significance of the map for the Austral 3 petroleum system, and why GDE mapping is important for pre-competitive basin studies at Geoscience Australia. [Abbott]

  • The GSQ Eulo 4 borehole was drilled approximately 35.5 km SW of Eulo, Queensland. The borehole was designed to test aeromagnetic anomalies in the basement rocks, and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.

  • The GSQ Cunnamulla 1 borehole was drilled approximately 110 km SE of Cunnamulla, Queensland. The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks, and to test pre-drilling geophysical cover thickness estimates.

  • It is increasingly recognised that, to maintain a sustainable pipeline of mineral resources in Australia, future discoveries will need to be made in areas obscured by more recent cover sequences. A major challenge to mineral exploration in covered frontiers is identifying new prospective fairways, and understanding and mapping important metallogenic processes at a range of scales to enable more effective targeting of exploration. Here, we present evidence for a completely buried corridor of interpreted high prospectivity—the East Tennant region—based on synthesis and integration of a diverse range of geoscientific datasets. Key indicators of the region’s potential include lithospheric-scale architecture, elevated electrical conductivity in the crust and mantle, and modelled and demonstrated hydrothermal alteration in the near surface. Multiscale geophysical surveys show evidence for crustal-scale fluid flow along major structures, connecting the mantle with the surface. Although few geological constraints exist in this region, examination of legacy drillcore and geochronology results demonstrates a similar history to rocks known to host mineralisation across the North Australian Craton. These results provide tantalising indications that the under-explored East Tennant region has significant potential to host major mineral systems. <b>Citation: </b>Schofield, A., Clark, A., Doublier, M.P., Murr, J., Skirrow, R., Goodwin, J., Cross, A. J., Pitt, L., Duan, J., Jiang, W., Wynne, P., O’Rourke, A., Czarnota, K., and I. C. Roach., 2020. Data integration for greenfields exploration: an example from the East Tennant region, Northern Territory. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The GSQ Eulo 3 borehole was drilled approximately 50 km SW of Eulo, Queensland. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks.

  • The Euroli 1 borehole was drilled approximately 23 km SSW of Hungerford, Queensland (which is located on the New South Wales-Queensland border). The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates. The Euroli 1 borehole was commenced as a vertical mud rotary borehole and was completed with a deviated diamond drilled tail using a wedge.