From 1 - 10 / 43
  • <div>This report brings together data and information relevant to understanding the regional geology, hydrogeology, and groundwater systems of the South Nicholson – Georgina (SNG) region in the Northern Territory and Queensland. This integrated, basin-scale hydrogeological assessment is part of Geoscience Australia’s National Groundwater Systems project in the Exploring for the Future program. While the northern Georgina Basin has been at the centre of recent investigations as part of studies into the underlying Beetaloo Sub-basin, no regional groundwater assessments have focused on central and southern parts of the Georgina Basin since the 1970s. Similarly, there has been no regional-scale hydrogeological investigation of the deeper South Nicholson Basin, although the paucity of groundwater data limited detailed assessment of the hydrogeology of this basin. This comprehensive desktop study has integrated numerous geoscience and hydrogeological datasets to develop a new whole-of-basin conceptualisation of groundwater flow systems and recharge and discharge processes within the regional unconfined aquifers of the Georgina Basin.</div><div><br></div><div>Key outputs arising from this study include: (1) the development of a hydrostratigraphic framework for the region, incorporating improved aquifer attribution for over 5,000 bores; and (2) publicly available basin-scale groundwater GIS data layers and maps, including a regional watertable map for the whole Georgina Basin. This regional assessment provides new insights into the hydrogeological characteristics and groundwater flow dynamics within the Georgina Basin, which can aid in the sustainable management of groundwater for current and future users reliant on this critical water resource.</div><div><br></div><div><br></div>

  • This report presents groundwater level information collected during Geoscience Australia’s Musgrave Palaeovalley Project. The Musgrave Palaeovalley Project was conducted as part of Exploring for the Future (EFTF), an Australian Government funded geoscience data and information acquisition program. The eight-year, $225 million program aims to deliver new geoscience data and knowledge to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources.</div><div>Groundwater level data was collected during two hydrogeochemical surveys undertaken in March and May 2023 based around the remote communities of Warburton, Kaltukatjara, Wanarn, Blackstone and Jameson in Western Australia and the Northern Territory. Sixteen bores were measured for their groundwater levels. The results are contained herein and within the attached CSV file.

  • <div>Non-technical summaries of groundwater in the remote communities of Warburton, Kaltukatjara (Docker River), Warakurna, Wingellina, Wanarn, Mantamaru (Jameson) and Papulankutja (Blackstone). These summaries are based on research undertaken as part of the Musgrave Palaeovalley Project and full results are available in the Musgrave Palaeovalley Project Synthesis Report (https://dx.doi.org/10.26186/149406).</div>

  • <div>Groundwater is critical to the survival of a range of ecosystems in Australia through provision of a direct source of water to plants with suitable root systems, and through discharge into surface water systems. Effectively managing groundwater dependent ecosystems (GDEs) alongside other water demands requires the ability to identify, characterise, and monitor vegetation condition.&nbsp;<em>&nbsp;</em><br> As part of the <a href="https://www.eftf.ga.gov.au/upper-darling-river-floodplain-groundwater-study">Exploring for the Future Upper Darling Floodplain</a> (UDF) groundwater project in western New South Wales, we present results from a study testing the suitability of two novel methods (a) recently available tasselled cap percentile products with national coverage through Digital Earth Australia, and (b) dry-conditions interferometric radar (InSAR) coherence images for mapping vegetation that is potentially groundwater dependent. <em>&nbsp;</em></div><div><em>&nbsp;</em></div><div>A combination of greenness and wetness 10th percentile tasselled cap products delineated terrestrial and aquatic GDEs with greater accuracy than existing regional ecosystem mapping, demonstrating the utility of these products for GDE identification. These results suggest the tasselled cap products can be used to support and refine the existing GDE mapping for this region, and further testing of their suitability and application for other regions is warranted.&nbsp;<em>&nbsp;</em></div><div><em>&nbsp;</em></div><div>The InSAR coherence images produced good agreement with the Bureau of Meteorology national GDE Atlas for areas of high probability of groundwater dependence. Although data availability and technical expertise currently lags behind optical imagery products, if research continues to show good performance in mapping potential GDEs and other applications, InSAR could become an important line of evidence within multi-dataset investigations.&nbsp;<em>&nbsp;</em></div><div><em>&nbsp;</em></div><div>Key next steps for improving the utility of these techniques &nbsp;are (a) comparison with vegetation condition data, and (b) further assessment of the likelihood of groundwater dependence through assessing relationships between vegetation condition and groundwater, surface water, and soil moisture availability.<em>&nbsp;</em></div><div>&nbsp;</div><div>This abstract was submitted/presented to the 2023 Australasian Groundwater / New Zealand Hydrological Society (AGC NZHS) Joint Conference (https://www.hydrologynz.org.nz/events-1/australasian-groundwater-nzhs-joint-conference)</div>

  • This was the first of five presentations held on 31 July 2023 as part of the National Groundwater Systems Workshop - A clear and consistent inventory of knowledge about Australia’s major hydrogeological provinces.

  • <div>Groundwater dependent ecosystems (GDEs) rely on access to groundwater on a permanent or intermittent basis to meet some or all of their water requirements (Richardson et al., 2011). The <a href="https://explorer-aws.dea.ga.gov.au/products/ga_ls_tc_pc_cyear_3">Tasseled Cap percentile products</a> created by Digital Earth Australia (2023) were used to identify potential GDEs for the South Nicholson-Georgina basins study area. These percentile products provide statistical summaries (10th, 50th, 90th percentiles) of landscape brightness, greenness and wetness in imagery acquired between 1987 and present day. The 10th percentile greenness and wetness represent the lowest 10% of values for the time period evaluated, e.g. 10th percentile greenness represents the least green period. In arid regions, areas that are depicted as persistently green and/or wet at the 10th percentile have the greatest potential to be GDEs. For this reason, and due to accessibility of the data, the 10th percentile Tasseled Cap greenness (TCG) and Tasseled Cap wetness (TCW) products were used as the basis for the assessment of GDEs for the South Nicholson-Georgina region. The 50th percentile greenness was utilised to create the coefficient of variance (CV) dataset. This data release is an ESRI geodatabase, with layer files, including: - combined classified 10th percentile greenness and wetness dataset (useful to identify potential groundwater dependent vegetation/other GDEs and differentiate between vegetation types) - CV of 50th percentile greenness dataset (useful when used in conjunction with the combined product to help identify groundwater dependent vegetation) For more information and detail on these products, refer to associated <a href="https://dx.doi.org/10.26186/149377">report</a>. </div><div><br></div><div><strong>References</strong></div><div>Digital Earth Australia (2023).&nbsp;<em><a href="https://docs.dea.ga.gov.au/">Digital Earth Australia User Guide.</a></em></div><div>Richardson, S., E. Irvine, R. Froend, P. Boon, S. Barber, and B. Bonneville. 2011a.&nbsp;<em>Australian groundwater-dependent ecosystem toolbox part 1: Assessment framework.</em>&nbsp;Waterlines Report 69. Canberra, Australia: Waterlines.</div><div><br></div>

  • <div>GeoInsight was an 18-month pilot project developed in the latter part of Geoscience Australia’s Exploring for the Future Program (2016–2024). The aim of this pilot was to develop a new approach to communicating geological information to non-technical audiences, that is, non-geoscience professionals. The pilot was developed using a human-centred design approach in which user needs were forefront considerations. Interviews and testing found that users wanted a simple and fast, plain-language experience which provided basic information and provided pathways for further research. GeoInsight’s vision is to be an accessible experience that curates information and data from across the Geoscience Australia digital ecosystem, helping users make decisions and refine their research approach, quickly and confidently. </div><div><br></div><div>In the first iteration of GeoInsight, selected products for energy, minerals, water, and complementary information from Geoscience Australia’s Data Discovery Portal and Data and Publications Catalogue were examined to (1) gauge the relevance of the information they contain for non-geoscientists and, (2) determine how best to deliver this information for effective use by non-technical audiences. </div><div><br></div><div>This Record documents the technical details of the methods used for summarising groundwater information for GeoInsight, including groundwater reliance, depth, salinity, and uses. This Record will be updated, including a change log, when the scope of information or methods for generating the data change.</div>

  • <div>This study investigates the feasibility of mapping potential groundwater dependent vegetation (GDV) at a regional scale using remote sensing data. Specifically, the Digital Earth Australia (DEA) Tasseled Cap Percentiles products, integrated with the coefficient of greenness and/or wetness, are applied in three case study regions in Australia to identify and characterise potential terrestrial and aquatic groundwater dependent ecosystems (GDE). The identified high potential GDE are consistent with existing GDE mapping, providing confidence in the methodology developed. The approach provides a consistent and rapid first-pass approach for identifying and assessing GDEs, especially in remote areas of Australia lacking detailed GDE and vegetation information.</div>

  • <div>Groundwater is a finite and largely hidden resource. Enhancing scientific understanding of groundwater systems improves decisions about its planning, allocation and use. This benefits all Australians through improved water management.</div><div>Australia’s groundwater resources underpin billions of dollars of economic activity, provide safe and reliable drinking water for millions of people, and sustain life and cultural values across the country. Sustainably managing our critical groundwater resources is vital to improving water security and protecting the environment.</div><div>Geoscience Australia and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) collaborate on initiatives funded by the Australian Government. We work together to deliver innovative solutions to nationally significant issues affecting Australia’s groundwater resources.</div><div>With world‑class expertise and facilities, we are at the forefront of groundwater science. Our combined hydrogeological capabilities are best applied to regional and national-scale challenges that extend beyond the remit of individual jurisdictions or private industry.</div><div>This publication highlights the scientific approaches, technologies, and methods that we apply to better understand and characterise Australia’s groundwater and includes case studies that demonstrate the unique value of our collaboration.</div><div><br></div>

  • <div>As part of the Exploring for the Future (EFTF) programme, the groundwater team undertook an in-depth investigation into characterising surface water -- groundwater interaction in the Cooper Creek floodplain using airborne electromagnetics (AEM). This work is to be released as part of the Lake Eyre Basin detailed inventory and as an EFTF extended abstract. As part of Geoscience Australia's commitment to transparent science, the scientific workflows that underpinned a large component of this investigation are to be released as a jupyter notebook. This notebook contains python code, figures and explanatory text that the reader can use to understand how the AEM data were processed, visualised, integrated with other data and interpreted.</div>