Data management and data science not elsewhere classified
Type of resources
Keywords
Publication year
Topics
-
<div>The Petroleum Systems Summary database stores the compilation of the current understanding of petroleum systems information by basin across Australia. The Petroleum Systems Summary database and delivery tool provide high-level information of the current understanding of key petroleum systems for areas of interest. For example, geological studies in the Exploring for the Future (EFTF) program have included the Canning, McArthur and South Nicholson basins (Carr et al., 2016; Hashimoto et al., 2018). The database and tool aim to assist geological studies by summarising and interpreting key datasets related to conventional and unconventional hydrocarbon exploration. Each petroleum systems summary includes a synopsis of the basin and key figures detailing the basin outline, major structural components, data availability, petroleum systems events chart and stratigraphy, and a précis of the key elements of source, reservoir and seal. Standardisation of petroleum systems nomenclature establishes a framework for each basin after Bradshaw (1993) and Bradshaw et al. (1994), with the source-reservoir naming conventions adopted from Magoon and Dow (1994). </div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/) via the Petroleum Systems Summary Tool (Edwards et al., 2020).</div>
-
<div>The fluid inclusion stratigraphy database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for Fluid Inclusion Stratigraphy (FIS) analyses performed by FIT, a Schlumberger Company (and predecessors), on fluid inclusions in rock samples taken from boreholes. Data includes the borehole location, sample depth, stratigraphy, analytical methods and other relevant metadata, as well as the mass spectrometry results presented as atomic mass units (amu) from 2 to 180 in parts per million (ppm) electron volts.</div><div> Fluid inclusions (FI) are microscopic samples of fluids trapped within minerals in the rock matrix and cementation phases. Hence, these FIS data record the bulk volatile chemistry of the fluid inclusions (i.e., water, gas, and/or oil) present in the rock sample and determine the relative abundance of the trapped compounds (e.g., in amu order, hydrogen, helium, methane, ethane, carbon dioxide, higher molecular weight aliphatic and aromatic hydrocarbons, and heterocyclic compounds containing nitrogen, oxygen or sulfur). The FI composition can be used to identify the presence of organic- (i.e., biogenic or thermogenic) and inorganic-sourced gases. These data provide information about fluid preservation, migration pathways and are used to evaluate the potential for hydrocarbon (i.e. dry gas, wet gas, oil) and non-hydrocarbon (e.g., hydrogen, helium) resources in a basin. These data are collated from Geoscience Australia records, destructive analysis reports (DARs) and well completion reports (WCRs), with the results being delivered in the Fluid Inclusion Stratigraphy (FIS) web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>
-
<div>Geoscience Australia's geoscientific relational databases use look-up tables to describe the data stored within. These look-ups contain, but are not limited to, information about boreholes, field geology, inorganic and organic geochemistry, hydrochemistry, geophysics, rock properties, samples and other general geological terms. These terms have then been compiled into a vocabulary of terms for publication via GA's vocabulary service. Within this vocabulary, GA references where sourced terms are published in external vocabularies with a source vocabulary URI (Uniform Resource Identifier). </div><div><br></div><div>All vocabularies, collections of concepts within vocabularies and individual concepts are identified with URI persistent identifiers of the form:</div><div>http://pid.geoscience.gov.au/def/voc/ga/{VOCABULARY-KEY}/{COLLECTION-OR-CONCEPT-NAME}</div>
-
<div>The active seismic and passive seismic database contains metadata about Australian land seismic surveys acquired by Geoscience Australia and its collaborative partners. </div><div>For active seismic this is onshore surveys with metadata including survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. Each also contains a field that contains links to the published data. </div><div><br></div><div>The active and passive seismic database is a subset of tables within the larger Geophysical Surveys and Datasets Database and development of these databases was completed as part of the second phase of the Exploring for the Future (EFTF) program (2020-2024). The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/), under 'Geophysics'. Use 'active seismic' or 'passive seismic' as search terms. </div><div><br></div>
-
<div>GeoInsight was an 18-month pilot project developed in the latter part of Geoscience Australia’s Exploring for the Future Program (2016–2024). The aim of this pilot was to develop a new approach to communicating geological information to non-technical audiences, that is, non-geoscience professionals. The pilot was developed using a human-centred design approach in which user needs were forefront considerations. Interviews and testing found that users wanted a simple and fast, plain-language experience which provided basic information and provided pathways for further research. GeoInsight’s vision is to be an accessible experience that curates information and data from across the Geoscience Australia ecosystem, helping users make decisions and refine their research approach, quickly and confidently.</div><div><br></div><div>Geoscience Australia hosts a wealth of geoscientific data, and the quantity of data available in the geosciences is expanding rapidly. This requires newly developed applications such as the GeoInsight pilot to be adaptable and malleable to changes and updates within this data. As such, utilising the existing Oracle databases, web service publication and platform development workflows currently employed within Geoscience Australia (GA) were optimal choices for data delivery for the GeoInsight pilot. This record is intended to give an overview of the how and why of the technical infrastructure of this project. It aims to summarise how the underlying databases were used for both existing and new data, as well as development of web services to supply the data to the pilot application. </div>
-
<div>This guide and template details data requirements for submission of mineral deposit geochemical data to the Critical Minerals in Ores (CMiO) database, hosted by Geoscience Australia, in partnership with the United States Geological Survey and the Geological Survey of Canada. The CMiO database is designed to capture multielement geochemical data from a wide variety of critical mineral-bearing deposits around the world. Samples included within this database must be well-characterized and come from localities that have been sufficiently studied to have a reasonable constraint on their deposit type and environment of formation. As such, only samples analysed by modern geochemical methods, and with certain minimum metadata attribution, can be accepted. Data that is submitted to the CMiO database will also be published via the Geoscience Australia Portal (portal.ga.gov.au) and Critical Minerals Mapping Initiative Portal (https://portal.ga.gov.au/persona/cmmi). </div><div><br></div>
-
<div>Join the team behind the Digital Atlas of Australia to explore how they are collaborating with government partners to transform how we access and use location data. </div><div> </div><div>In this webinar, key partner agencies - earlier adopters of the Australian Government’s new geospatial platform - will share valuable insights on how they are using the Digital Atlas. You will learn how the Australian Bureau of Statistics, the Department of Social Services, and the Department of Industry, Science and Resources, are making their data easier to access and use and the innovative, interactive maps and tools they’re creating collaboratively to unlock place-based insights to inform their policy, program and service delivery. </div><div> </div><div>Whether you're a seasoned professional or new to geospatial data, this webinar will showcase how the Digital Atlas is transforming decision-making and driving cross-sector innovation. </div><div> </div><div><strong>About the Digital Atlas of Australia</strong></div><div>Developed and delivered by Geoscience Australia, the Digital Atlas provides access to hundreds of curated trusted national datasets in one location. It uses location as the connecting thread to bring together data on Australia’s geography, people, economy and the environment to support informed place-based decisions across various sectors.</div><div><strong> </strong></div><div>Learn more about the Digital Atlas: https://digital.atlas.gov.au/pages/about</div>