Birrindudu Basin
Type of resources
Keywords
Publication year
Topics
-
<div>The Northwest Northern Territory Seismic Survey (NW NT Seismic Survey) was acquired as part of the Australian Government's Exploring for the Future (EFTF) program, conducted from 5 August to 20 September 2023. This ambitious project is a collaboration between Geoscience Australia and the Northern Territory Geological Survey, aimed to systematically map the subsurface geology of a significant yet largely unexplored region of Australia. Covering an extensive area that includes the Birrindudu Basin, Kalkarindji Suite, Tanami, and Wolfe Basin, the survey successfully acquired about 846 kilometers of high-resolution seismic data across four seismic transects, specifically designated as 23GA-NT1 (54.5 km and 184.5 km in two separate sections), 23GA-NT2 (112 km), 23GA-NT3 (221.46 km), and 23GA-NT4 (274.2 km).</div><div><br></div><div>This seismic campaign is part of a strategic effort to illuminate the geological framework and evaluate the resource potential within these regions, which are considered highly prospective for minerals, geoenergy, geological storage and groundwater resources. By deploying advanced seismic acquisition technologies to capture detailed images of the Earth's crust, this survey provides foundational data for identifying the region's geological features and resource potential, such as basin geometry and fault systems. The data derived from this survey are expected to play a pivotal role in guiding future exploration activities, attracting investment to the region, and ultimately contributing to the sustainable development of Australia's natural resources.</div><div><br></div><div>The project underscores the commitment of the Australian Government and its partners to enhance the geoscientific understanding of the continent's frontier regions. The findings from the NW NT Seismic Survey will advance our knowledge of Australia's geology and unlock new opportunities for exploration and economic development in the northwest Northern Territory. Through the dissemination of precompetitive geoscience data, the EFTF program continues to foster innovation and collaboration across the exploration sector, ensuring that Australia remains at the forefront of global efforts to secure a sustainable and prosperous future.</div><div><br></div> <b>To access the survey data and related products, please contact clientservices@ga.gov.au and quote eCat#149287. The following products are available, with some accessible via direct download and others available upon request: Products Available for Direct Download: — Processed stack – DMO, Post-stack Time Migration, Prestack Time Migration — Published on 28/06/2024 – Prestack Depth Migration — Published on 30/07/2024 Products Available via Request: — Field data (Raw Shot Gathers, SPS files, Observer Logs, Ancillary Data, etc.) — Published on 13/03/2024 </b>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>The Proterozoic Birrindudu Basin is an underexplored region that contains sparse geological data. Strata of similar age are highly prospective to the east, in the McArthur and South Nicholson basins and the Mount Isa region. To investigate this underexplored and data-poor region, the L214 Northwest Northern Territory Seismic Survey was acquired in August to September 2023 by GA and co-funded by the Northern Territory Government. Prior to this survey the region contained minimal seismic data. To complement the acquisition of the seismic survey, a sampling program of legacy stratigraphic and mineral exploration drill holes was also undertaken.</div><div><br></div><div>The new sampling program and seismic reflection data acquired over the Birrindudu Basin and its flanks, has identified many areas of exploration opportunity. This has almost tripled seismic coverage over the Birrindudu Basin, which has enabled new perspectives to be gained on its geology and relationship to surrounding regions. The new seismic has shown an increase in the extent of the Birrindudu Basin, revealing the presence of extensive concealed Birrindudu Basin sedimentary sequences and major, well preserved depocentres. In the central Birrindudu Basin and Tanami Region, shallow basement and deep-seated faults are encouraging for mineralisation, as these structures have the potential to focus mineralised fluids to the near surface. The clear presence of shallow Tanami Region rocks underlying the southern Birrindudu Basin sequences at the northern end of line 23GA-NT2 extends the mineral resource potential of the Tanami Region further north into the southern Birrindudu Basin. A new minimum age of 1822±7 Ma for the deposition of metasediments in drill hole LBD2 for rocks underlying the central Birrindudu Basin, extends the age-equivalent mineral-rich basement rocks of the Tanami Region north into the central Birrindudu Basin – extending the mineral resource potential into a new region.</div><div><br></div><div>The continuous stratigraphy imaged of the Birrindudu Basin by the new seismic is encouraging for energy prospectivity, as the system elements needed for an effective petroleum system, better defined by the new sampling program results, have been imaged to extend over a wider and deeper area. New organic petrological analysis and reflectance data indicate the sampled sections have reached thermal maturity suitable for hydrocarbon generation. Oil inclusion analyses provide evidence for oil generation and migration, and hence elements of a petroleum system are present in the central and northwestern Birrindudu Basin. With the expanded breadth of these rocks demonstrated on the seismic, this greatly increases the spatial extent of hydrocarbon prospectivity in Birrindudu Basin.</div>
-
Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. The name ‘Birrindudu Basin’ was first introduced by Blake et al. (1975) and Sweet (1977) for a succession of clastic sedimentary rocks and carbonates, originally considered to be Paleoproterozoic to Neoproterozoic in age, and overlain by the Neoproterozoic Victoria Basin (Dunster et al., 2000), formerly known as the Victoria River Basin (see Sweet, 1977).
-
Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from an mineral exploration drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory This ecat record releases the final report and raw data files (*.LAS) by FIT Schlumberger. Company reference number FI230005a.
-
<div>This report presents new data from X-ray Computerised Tomography (XCT) scanning, gas porosity and permeability testing, and grain density measurements of 79 of 82 samples from the Birrindudu and McArthur basins. Three plugs could not be recovered from the whole core section. Plugs were taken from depths of interest from drill holes Manbulloo S1, Hidden Valley S2, Broughton 1, ANT003, 99VRNTGSDD1, 99VRNTGSDD2, Lamont Pass 3 and WLMB001B.</div><div><br></div><div>These tests were performed in 2023 by CSIRO in Perth. The full results as provided by CSIRO to Geoscience Australia are provided as an attachment to this document. This work was conducted as part of the Exploring for the Future Program (Officer–Musgrave–Birrindudu module).</div><div><br></div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from the drillhole WLMB001B, Birrindudu Basin, located in the northwest Northern Territory.</div><div><br></div><div>This ecat record releases the final report containing the results of fluid inclusion stratigraphy, thin section and microthermometry analyses, raw data files (*.LAS) and rock descriptions by FIT Schlumberger. Company reference number FI230004a.</div>
-
<div>This report presents seal capacity results of nine samples from the Birrindudu and McArthur basins, Northern Territory. Plugs were taken from depths of interest from drill holes Manbulloo S1, Broughton 1, Lamont Pass 3, 99VRNTGSDD1 and WLMB001B. These plugs were analysed via mercury injection capillary pressure testing. This work was conducted by CSIRO under contract to GA as part of the Exploring for the Future program (Officer–Musgrave–Birrindudu Module).</div>
-
<div>This report presents the rock strength and elastic properties, as tested on selected rock samples from the Birrindudu and McArthur basins. Testing was conducted by CSIRO Energy, under contract to Geoscience Australia. The tests produced parameters including: 1) unconfined compressive strength (UCS), 2) stress-strain-time curves for UCS and repeat single-stage triaxial (STXL) experiments, 3) static elastic properties, Young’s modulus and Poisson’s ratio, and 4) failure envelopes (Mohr circles) for STXL tests. This work was conducted as part of the Exploring for the Future Program.</div>
-
<div>Geoscience Australia’s Exploring for the Future (EFTF) program is a multi-year Australian Government initiative, led by Geoscience Australia in partnership with State and Territory governments. The EFTF program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and information, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The EFTF program, which commenced in 2016, is an eight year, $225 million investment by the Australian Government.</div><div><br></div><div>This report presents the results of Grains with Oil Inclusions (GOI™) and Frequency of Oil Inclusions (FOI™) on rock samples from three selected drill holes across the Birrindudu Basin. Forty-five samples were obtained from drill holes WLMB001B, ANT003 and 99VRNTGSDD1. GOI™ and FOI™ was conducted on sedimentary and carbonate vein lithologies to investigate the potential presence of oil inclusions. Oil inclusions were recorded in samples taken from drill holes WLMB001B and ANT003, but not 99VRNTGSDD1. Analysis was undertaken by CSIRO under contract to Geoscience Australia.</div>
-
<div>The Birrindudu Basin is a region of focus for the second phase of the Exploring for the Future program (EFTF; 2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>In order to provide an improved understanding of the stratigraphy, basin architecture and resource potential of the Birrindudu Basin and surrounding region, Geoscience Australia, in collaboration with the Northern Territory Geological Survey and CSIRO is acquiring a range of datasets as part of phase two of EFTF. </div><div><br></div><div>This data release presents XRD results from 79 bulk core samples from the Birrindudu and McArthur basins. This report and the associated analyses were conducted by CSIRO, under contract to Geoscience Australia.</div>