From 1 - 10 / 17
  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>We present a 3-D resistivity model derived from magnetotelluric data collected by two recent surveys in the Curnamona and Delamerian Region: the Curnamona Cube survey led by the University of Adelaide and funded by AuScope and the Curnamona Cube Extension survey (https://doi.org/10.26186/147904) by Geoscience Australia as part of Exploring for the Future Program. In total, data from 231 sites were used to produce 3-D models using the ModEM code. Details of data inversion are provided in the Readme.pdf file. The resistivity model can be used to enhance the understanding of the geodynamics and mineral potential in the Curnamona Province and Delamerian Orogen.</div><div><br></div><div>We greatly appreciate that Prof. Graham Heinson from the University of Adelaide has made the Curnamona Cube survey data available for this work. The modelling work was undertaken with the assistance of resources from the National Computational Infrastructure (NCI Australia).</div><div><br></div><div>This release package contains the preferred 3-D resistivity model in SGrid format and geo-referenced depth slices in .tif format.</div><div><br></div>

  • <div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>We have used new magnetotelluric data collected in the Curnamona Province and Delamerian Orogen to image electrical resistivity structures. Our resistivity model confirms crustal-scale conductive features mapped by AusLAMP models, i.e., the prominent Curnamona Province Conductor and the two Nackara Arc conductors, and resolves them in greater detail. The new model also reveals several apparently continuous arcuate conductors within the lower crust extending from the Eastern Nackara Arc Conductor to Broken Hill, and further into the Delamerian Orogen. In the west, these conductors coincide with the dominant structural grain of the Delamerian Orogen and are interpreted to represent ancient fluid pathways associated with major faults in the area. The eastern conductor diverts from the dominant structural grain in the Grasmere knee zone. The source of this conductor is enigmatic, although possibilities could include complex deformation as the Cambrian convergent margin was deformed in the Delamerian Orogeny, or younger events such as the emplacement of the late-Silurian Allambie Woolshed Granite. The conductive features provide new insights for understanding the geodynamic events and potential mineral systems associated with the transition from Proterozoic Australia in the west to the mostly Phanerozoic Tasmanides in the east. These conductivity anomalies may represent large-scale trans-crustal structures, which can place fundamental control on the spatial distribution and formation of mineral systems in the Curnamona Province and Delamerian Orogen.</div><div><br></div><div><strong>Citation: </strong>Jiang, W., Clark, A., Cheng, Y., Doublier, M., Hitchman, A. & Duan, J., 2024. Unveiling electrical resistivity structures along the undercover Delamerian Orogen, Southeast Australia. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149232</div>

  • <div>The Darling-Curnamona-Delamerian (DCD) project focused on the covered portion of the Delamerian orogen, situated in the south-eastern mainland states of Australia.&nbsp;The aims of the project were to develop a greater understanding of the geodynamic history of the Delamerian Orogen, characterise known magmatic-hydrothermal mineral systems, and assess mineral potential for a suite of minerals including copper (Cu), gold (Au), and nickel (Ni), and critical minerals like platinum-group elements (PGEs) and rare-earth elements (REEs). </div><div>Here, we collate whole rock geochemistry data from new and legacy samples of mafic to intermediate magmatic rocks of the Loch Lilly-Kars Belt in order to determine the likely source of these magmas and constrain the prevailing tectonic setting during their emplacement. We apply multi-elemental diagrams and various elemental discrimination diagrams to characterise various groups of magmatic rocks in these belts, taking into account their geographic affinity and new geochronological data (e.g. Mole et al., 2023; Mole et al., 2024). The geochemical characteristics of these groups and the implications for the tectonic setting into which they were emplaced are discussed. Comparisons are made with potentially similar magmatic rocks of the&nbsp;Koonenberry Belt and Grampians-Stavely Zone. Results from this study have significant implications for the tectonic setting in which the Loch Lilly-Kars Belt developed, and hence also the mineral potential of the Belt. </div><div> </div>

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This Record presents new U-Pb zircon geochronology from the Loch-Lilly Kars and Lake Wintlow (as described by Clark et al. 2024) Belts of the central Delamerian Orogen (Foden et al., 2020; Gilmore et al., 2023; Mole et al., 2023), performed on Geoscience Australia’s (GA) sensitive high-resolution ion microprobe (SHRIMP). The eight samples presented here (three sedimentary and five igneous rocks; Table i) were collected during Geoscience Australia’s drilling campaign across the region, which consisted of 17 drill-holes (Pitt et al., 2023), using two drilling techniques (coiled-tube rotary and conventional diamond). This work was performed as part of the MinEx CRC National Drilling initiative (NDI) and Geoscience Australia’s Darling-Curnamona-Delamerian project of the Exploring for the Future program (EFTF; <a href="https://www.eftf.ga.gov.au/">https://www.eftf.ga.gov.au/</a>). The primary aims of this drilling were to (1) understand and constrain the geology of the southern Loch-Lilly Kars Belt; and (2) assess whether Cambrian magmatic rocks continued to the south-west in the Lake Wintlow Belt, marking a possible continuation of the Stavely Belt volcanic arc rocks observed in western Victoria (Bowman et al., 2019; Lewis et al., 2016; Lewis et al., 2015; Schofield, 2018; Figure i). As both these regions are covered, this new drilling and the geochronology they allow provide the first constraints on the age of these rock units. In addition, due to the lack of surface correlation and detailed geological mapping, these units currently have no officially-defined stratigraphic nomenclature and remain unnamed. For detailed information on all drill-holes completed as part of the survey, we direct readers to the summary report by Pitt et al. (2023): <a href="https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/148639">eCat 148639</a>.

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract </div><div><br></div><div><strong>Short Abstract: </strong>The Delamerian Orogen, with a length of ~1000 km on mainland Australia and a proven potential to host mineralisation, represents an evolving exploration opportunity. However, uncertainty surrounding the age and tectonic setting of the orogen is a barrier to confident exploration in frontier covered regions, such as the Loch Lilly-Kars Belt in western New South Wales and South Australia. A major area of uncertainty is the configuration and extent of the Cambrian convergent-margin system and lateral variations thereof. In this study, we highlight multidisciplinary data from new and legacy sources, including lithology, geochronology, geochemistry, potential-field geophysics, deep-crustal seismic, and magnetotelluric data that permit a revised interpretation of the geological framework for the Delamerian Orogen in mainland Australia, with an emphasis on the covered, central part of the system. These data indicate that a largely continuous, east-facing volcanic arc developed in the Delamerian Orogen in the Cambrian. The arc transitions from exhibiting a strong continental affinity in the Koonenberry Belt to having less continental affinity in the Grampians-Stavely Zone of Victoria. The Loch Lilly-Kars Belt is interpreted to have occupied a volcanic arc to incipient back-arc position in the middle Cambrian.&nbsp;</div><div><br></div><div><strong>Citation: </strong>Clark A.D., et al., 2024. Cambrian convergent margin configuration in the Delamerian Orogen of mainland Australia. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149647 </div>

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short abstract: </strong> Crustal architecture provides first order controls on the distribution of mineral resources of an area and is best imaged by deep seismic reflection data. Here we present a first interpretation of seismic line 22GA-CD2, acquired as part of the Darling-Curnamona-Delamerian (DCD) project. Line 22GA-CD2 images the central eastern Delamerian Orogen, where basement rocks are concealed by the Murray Basin. Key findings include: (i) the crustal architecture preserves many characteristics of the early evolution of west-dipping Delamerian subduction, accretion and orogeny between ~ 515 Ma - 495 Ma. This initial configuration has been reworked and reactivated during younger orogenic events; (ii) the lower and middle crust constitutes the newly defined Barrier Seismic Province, which is also imaged in legacy seismic reflection line 05GA-TL1 and interpreted to continue northeast to the Olepoloko Fault; (iii) a similar seismic character to that of the Barrier Seismic Province has been observed in legacy seismic reflection lines in Victoria and related to a Cambrian accretionary setting and adjacent foreland; (iv) the present-day upper crustal configuration is largely the result of contractional fault reactivation, with significant vertical movements during the Kanimblan-Alice Springs Orogeny (~ 360 Ma - 340 Ma); (v) a large area of prospective rocks for mineral deposits with Cambrian arc-affiliation are accessible to exploration under shallow cover of the Murray Basin (often less than 200 m).</div><div>&nbsp;&nbsp;</div><div><strong>Citation: </strong>Doublier M.P., et al., 2024. Crustal architecture along seismic line 22GA-CD2: new insights from the Darling-Curnamona-Delamerian deep seismic reflection survey. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/149658</div>

  • <div>This study is part of the Mineral Potential Assessment (MPA) module of Geoscience Australia's Darling-Curnamona-Delamerian (DCD) project, a deep-dive project within the Exploring for the Future Program (EFTF) 2020-2024. An objective of the DCD project is to further the understanding of the geological architecture of the Delamerian Orogen into a cohesive framework enable a regional mineral potential assessment of this under-explored and mostly under cover Orogen. The MPA module is one of eight modules under the umbrella of the DCD project. To facilitate assessment of the mineral potential of the project area, the mineral potential assessment study has 3 key scientific objectives: (1) Defining the characteristics of the mineral systems / prospects. (2)&nbsp;&nbsp;Evaluating the temporal framework of the formation of mineral systems / prospects; and (3) Understanding the regional magma fertility. This study delivers Objective 1, i.e., outlining the principle geological and metallogenic characteristics of reported mineral prospects in the project area.&nbsp;</div><div><br></div><div>Legacy drill cores best demonstrating metallogenic features of different mineral system types at key prospects across the project area were selected for viewing and sampling following review of historical exploration reports and assay results. Four sets of data are included in the appendices of this report: (1)&nbsp;&nbsp;HyLogger spectral images of 20 drill holes of 8 prospects in New South Wales. (2)&nbsp;&nbsp;143 high-resolution scan files of legacy drill core samples across the project area. (3)&nbsp;&nbsp;16 microscopic images of thin sections for 4 prospects of the Loch Lilly-Kars Belt, New South Wales. (4)&nbsp;&nbsp;53 Backscattered Electron (BSE) images and 53 Advanced Mineral Identification and Characterization System (AMICS) high-resolution mineral maps of 53 samples from 18 prospects across the whole Delamerian Margin.&nbsp;</div><div><br></div><div>Metallogenic characteristics of samples from four different mineral deposit types were studied, along deposits of uncertain affiliation (referred here as undefined systems), including (1) Porphyry-epithermal mineral systems. (2)&nbsp;&nbsp;Volcanic hosted massive sulfide (VHMS) mineral systems. (3)&nbsp;&nbsp;Orogenic gold mineral systems. (4)&nbsp;&nbsp;Mafic-ultramafic Cu-Ni-PGE mineral systems. (5)&nbsp;&nbsp;Metallogenetically undefined systems. Detailed metallogenic characteristics of the samples from 22 key prospects in Delamerian Orogen are documented in this report.&nbsp;&nbsp;</div><div><br></div><div>This is the first systemic study on the essential metallogenic characteristics of the mineral systems in Delamerian. The characterisations outlined in this report are foundational for understanding the regional metallogenesis and assessing the potential of multiple types of mineral systems in the Delamerian Belt, which should be useful in both academic and the mineral exploration sector.</div><div><br></div><div>The high-resolution BSE and AMICS mineral maps are available at Geoscience Australia. Please reach out to the senior author of this GA Record, Dr. Yanbo Cheng (Yanbo.cheng@ga.gov.au). </div>

  • <div><strong>Output Type:</strong> Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>An advanced understanding of regional-scale metallogenic characteristics and ore-formation controls is fundamental for mineral discovery, particularly in underexplored covered terranes, such as the Delamerian Orogen of southeastern Australia. The Delamerian Orogen is defined as the spatial extent of rocks first deformed by the Delamerian Orogeny, though the Orogen was also affected by younger geodynamic events. Petrology of the mineralised host rocks from over 20 mineral prospects and deposits has led to the recognition of four types of mineral systems related to the geodynamic history of the Delamerian Orogen on mainland Australia, including (1) porphyry-epithermal; (2) volcanic-hosted massive sulphide (VHMS); (3) orogenic gold; and (4) mafic-ultramafic magmatic Cu-Ni-PGE systems. Several other prospects are yet to be classified due to insufficient data, although there is strong evidence to suggest that these are magmatic-hydrothermal in origin. Direct dating of hydrothermal alteration and mineralisation at key mineral deposits and prospects (using U-Pb in titanite and apatite, and Sm-Nd in fluorite) identified four major metallogenic events in the Delamerian Orogen margin. The middle to late Cambrian (505–494 Ma) mineral systems, throughout the eastern margin of the Delamerian Orogen, are potentially the most significant. However, our new dating indicates other metallogenic events at 590–580 Ma, 480–460 Ma, and 412–399 Ma. Analysis of data related to mineral systems fertility reveals crustal controls on the location and type of mineralisation in the Delamerian Orogen. Integration of Hf and O isotopes in zircon, and S isotopes in sulphide minerals indicates that the geology of the Orogen may host multiple opportunities for mineral system development. An indicative map of ca.600–400 Ma mineral system potential was developed by integrating this new data, together with other geological, geochemical and geophysical datasets within the geodynamic context of the Delamerian Orogen. Importantly, this study demonstrates the metallogenic characteristics of multiple types and episodes of mineral system development, and the geological processes that have controlled their formation to aid exploration.</div><div><br></div><div><strong>Citation: </strong>Cheng, Y., Gilmore, P., Lewis, C., Roach, I., Clark, A., Mole, D., Pitt, L., Doublier, M., Sanchez, G., Schofield, A., O'Rourke, A., Budd, A., Huston, D., Czarnota, K., Meffre, S., Feig, S., Maas, R., Gilbert, S., Cairns, C., Cayley, R., Wise, T., Wade, C., Werner, M., Folkes, C. &amp; Hughes, K., 2024. Mineral systems and metallogeny of the Delamerian Orogen margin. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/149657</div><div><br></div>

  • This report contains new whole-rock and isotope geochemical data, associated sample metadata, an assessment of the data’s quality assurance, for 742 samples collected in and around the Curnamona and Delamerian provinces, across numerous drillcore sampling campaigns through 2021-23. The data can be downloaded via the Geoscience Australia EFTF portal (https://portal.ga.gov.au/persona/eftf) or in the files attached with this record (http://pid.geoscience.gov.au/dataset/ga/148651). Geochemical sampling in the Curnamona region straddles both South Australia and New South Wales. The objective of sampling was to obtain representative coverage (both stratigraphically and spatially) to support developing regional geochemical baselines (in conjunction with existing geochemistry). Thus, this sampling included both the Curnamona Province and the overlying basins (Eromanga Basin, Lake Eyre Basin). Whole-rock geochemistry is reported for 562 samples, with a subset of 13 samples analysed for Pb and Sr isotopes, and another subset of 36 samples analysed by thin section petrography (all presented herein). Geochemical sampling in the Delamerian region has focussed on available legacy drill core in South Australia, New South Wales and Victoria. The objective of sampling was to (systematically) constrain the geochemical character of magmatic rocks across the mainland extent of the Delamerian Orogen, as well as younger volcanics within the Delamerian Orogen and/or overlying cover. This geochemical sampling was conducted in conjunction with geochronology, mineral systems sampling and stratigraphic drilling (all components of the DCD project) to reinterpret the timing, character and fertility of the Delamerian Orogen. Whole-rock geochemistry is reported for 180 samples. Version 2.0 (published 28 November 2023) has added whole rock geochemistry for 22 new samples in the Delamerian region. The data products and report have been updated accordingly.

  • A comprehensive compilation of rock, regolith and groundwater geochemistry across the Curnamona Province and overlying basins. This product is part of the Curnamona Geochemistry module of GA's Exploring for the Future program, which is seeking to understand geochemical baselines within the Curnamona Province to support mineral exploration under cover. Data is sourced from GA, CSIRO and state databases, and run through a quality control process to address common database issues (such as unit errors). The data has been separated by sample type and migrated into a standard data structure to make the data internally consistent. A central source for cleaned geochemical data in the same data format is a valuable resource for further research and exploration in the region.