Backscatter
Type of resources
Keywords
Publication year
Topics
-
The Davis Coastal Seabed Mapping Survey, Antarctica (GA-4301 / AAS2201 / HI468) was acquired by the Australian Antarctic Division workboat Howard Burton during February-March 2010 as a component of Australian Antarctic Science (AAS) Project 2201 - Natural Variability and Human Induced Change on Antarctic Nearshore Marine Benthic Communities. The survey was undertaken as a collaboration between Geoscience Australia, the Australian Antarctic Division and the Australian Hydrographic Service (Royal Australian Navy). The objectives were to provide multibeam bathymetry and backscatter of the coastal region of the Vestfold Hills around Davis Station, Antarctica, to aid the understanding of sea bed character, benthic habitats, provide a basis for hydrodynamic modeling of water movement around Davis, and to update and extend the navigational charts of the region.
-
A bathymetric survey of Darwin Harbour was undertaken during the period 24 June to 20 August 2011 by iXSurvey Australia Pty Ltd for the Department of Natural Resources, Environment, The Arts and Sport (NRETAS) in collaboration with Geoscience Australia (GA), the Darwin Port Corporation (DPC) and the Australian Institute of Marine Science (AIMS) using GA's Kongsberg EM3002D multibeam sonar system and DPC's vessel Matthew Flinders.
-
Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. The "challenger" folder contains raw multibeam backscatter data from two surveys archived seperately in 0306_tasman1 and 0315_se_tasmania. The raw multibeam backscatter data were collected along survey lines using GAs Kongsberg SIMRAD EM3002 in single head configuration from aboard MV Challenger.
-
Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave generated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. The "0308_carnarvon_shelf" folder contains raw multibeam backscatter data of the Carnarvorn Shelf. The raw multibeam backscatter data were collected along survey lines using GAs Kongsberg SIMRAD EM3002 in single head configuration from aboard RV Solander.
-
This dataset contains multibeam sonar angular backscatter response curve data of area A1 from seabed mapping surveys on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf of the Timor Sea. The survey was conducted under a Memorandum of Understanding between Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) in two consecutive years 2009 (GA survey number GA-0322 and AIMS survey number SOL4934) and 2010 (GA survey number GA-0325 and AIMS survey number SOL5117). The surveys obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to investigate relationships between the physical environment and associated biota for biodiversity prediction. The surveys also provide Arafura-Timor Sea, and wider northern Australian marine region context for the benthic biodiversity of the Van Diemen Rise. Four study areas were investigated across the outer to inner shelf. Refer to the GA record 'Methodologies for seabed substrate characterisation using multibeam bathymetry, backscatter, and video data: A case study for the Eastern Joseph Bonaparte Gulf, Northern Australia' for further information on processing techniques applied (GeoCat: 74092; GA Record: 2013/11).
-
This dataset contains hardness classification data from seabed mapping surveys on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf of the Timor Sea. The survey was conducted under a Memorandum of Understanding between Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) in two consecutive years 2009 (GA survey number GA-0322 and AIMS survey number SOL4934) and 2010 (GA survey number GA-0325 and AIMS survey number SOL5117). The surveys obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to investigate relationships between the physical environment and associated biota for biodiversity prediction. The surveys also provide Arafura-Timor Sea, and wider northern Australian marine region context for the benthic biodiversity of the Van Diemen Rise. Four study areas were investigated across the outer to inner shelf. Refer to the GA record 'Methodologies for seabed substrate characterisation using multibeam bathymetry, backscatter, and video data: A case study for the Eastern Joseph Bonaparte Gulf, Northern Australia' for further information on processing techniques applied (GeoCat: 74092; GA Record: 2013/11).
-
Geoscience Australia carried out a marine survey on Lord Howe Island shelf (NSW) in 2008 (SS062008) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, rock coring, observation of benthic habitats using underwater towed video, and measurement of ocean tides and wavegenerated currents. Subbottom profile data was also collected to map sediment thickness and shelf stratigraphy. Data and samples were acquired using the National Facility Research Vessel Southern Surveyor. Bathymetric data from this survey was merged with other preexisting bathymetric data (including LADS) to generate a grid covering 1034 sq km. As part of a separate Geoscience Australia survey in 2007 (TAN0713), an oceanographic mooring was deployed on the northern edge of Lord Howe Island shelf. The mooring was recovered during the 2008 survey following a 6 month deployment. The "2461_ss062008" folder contains processed multibeam backscatter data of the Lord Howe Rise. The SIMRAD EM300 multibeam backscatter data were processed using the CMST-GA MB Process, a multibeam processing toolbox codeveloped by Geoscience Australia and Curtin University of Technology.
-
Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave generated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. The "kimbla" folder contains raw multibeam backscatter data from four surveys archived seperately in 0303_jervis_trials, 0305_jervisbay2, 0311_jervisbay3 and 0313_jervis_trials4. The raw multibeam backscatter data were collected along survey lines using GAs Kongsberg SIMRAD EM3002 in single head and dual head configuration from aboard Work Boat Kimbla.
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was acquired by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas.
-
Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises high resolution backscatter grids.