From 1 - 10 / 110
  • Geoscience Australia (GA) has recently released regional airborne electromagnetic data (AEM) in two survey areas of the Pine Creek region. The Woolner Granite-Rum Jungle survey in the western part of the region was flown using TEMPESTTM and the Kombolgie survey in the eastern part was flown using VTEMTM. These data assist in mapping geological features deemed to be critical for fertile unconformity-related uranium and sandstone-hosted uranium systems. These mapped features in combination with other datasets are used to assess the prospectivity of uranium systems.

  • The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey covers an area of 74,000 km2 from Darwin to Katherine in the Northern Territory which hosts several world class deposits, including the Ranger Uranium Mine, Nabarlek, Mt Todd, Moline and Cosmo Howley. Aimed at regional mapping, uranium exploration, reducing exploration risk and promoting exploration activity, the program worked closely with industry partners to infill wide regional line spacing (5km) with deposit scale line spacing (less than 1km). The survey results are relevant in exploration for a variety of commodities and resources, including uranium, copper, lead, zinc, gold, nickel and groundwater. Geoscience Australia's interpretation products include sample-by-sample layered earth inversion products comprising located data, geo-located conductivity depth sections, depth slice grids, elevation slice grids, inversion report and an interpretation report. All data and products are available from GA as well as the Northern Territory Geological Survey Geophysical Image Web Server.

  • Airborne Electromagnetic data are being acquired by Geoscience Australia in areas considered to have potential for uranium or thorium mineralisation under the Australian Government's Onshore Energy Security Program (OESP). The surveys have been managed and interpreted by Geoscience Australia's Airborne Electromagnetic Acquisition and Interpretation project. In contrast to industry style deposit scale investigations, these surveys are designed to reveal new geological information at regional scale. The Frome Embayment AEM survey was acquired using the TEMPESTTM AEM system by Fugro Airborne Surveys under contract to GA. The survey covers a total of 32 300 line km and an area of 95 450 km2, the largest AEM survey by area ever flown in Australia. This data release contains the Phase-1 data, that is, contractor quality-controlled and quality-assessed data fas well as the Phase-2 data, that is Geoscience Australia layered earth inversion (GA-LEI) data and derived products for the Callabonna Uranium Infill Area. The data and products described in this report are available from the GA AEM website.

  • In 2008, the Ord Irrigation Cooperative commissioned an airborne electromagnetics (AEM) survey of the ORIA Stage 1 and 2 areas to identify, quantify and understand any potential salinity risks in the current Ord irrigation area and the parts of the catchment that have been identified as potential future irrigation sites or potentially impacted by future irrigation. The project has been funded by the Australian and Western Australian governments through the National Action Plan for Salinity and Water Quality. Geoscience Australia and CSIRO were contracted to carry out the analysis and interpretation of the AEM dataset, and produce customised interpretation products. Some of the more specific questions it was hoped to address included: - Are we at risk of salinity in the Ord Catchment? - If so what areas are at the greatest risk? - Where can we target management to reduce this risk? - How can we plan future development to minimise salinity risk and maximise longevity of projects? The areas surveyed include the current Stage 1 Ord Irrigation Area, Stage 2 Irrigation Area (including Weaber and Knox Plains and Carlton Hill - Parry's Lagoon Conservation Area. The inclusion of undeveloped land in this survey is because the technology provides the opportunity to ensure any future irrigation development is guided by the best available information on soil type, aquifer quality and location and salinity risk. The information generated by this project will be publicly available and can be used for such things as: - Identifying leaky areas in the landscape that may require more concentrated management or can be designated for more suitable land use; - Where salt is stored in the landscape and at what depth, and where in the landscape it may influence plant growth; - Provide new constraints on the connectivity of aquifer systems in 3D across the ORIA and enable the construction of more realistic hydrogeological models to improve surface and groundwater management.

  • Between the 31st of March 2013 and the 15th of May 2013, Fugro Airborne Surveys Pty. Ltd., (FAS, now known as CGG Aviation (Australia) Pty Ltd) undertook a TEMPEST® airborne electromagnetic and magnetic survey over the South West Coastal Plain and the South Coast areas of Western Australia. There were four separate project areas: (1) Swan Coastal Plain, (2) Scott Coastal Plain, (3) Albany, (4) Esperance. The survey is designed to map groundwater resources and assess aquifer sustainability in four separate areas of southern WA. The survey areas are located in: 1. Esperance: Traverses spaced 300 & 600 metres apart in a north-south direction at 120 metres above ground level totalling 1,133 line km. 2. Albany: Traverses spaced 300 & 600 metres apart in a north-south direction at 120 metres above ground level totalling 2,163 line km. 3. Scott Coastal Plain: Traverses spaced 600 metres apart in a ne-sw direction at 120 metres above ground level totalling 2,980 line km. 4. Swan Coastal Plain: Traverses spaced 600 metres apart in a nw-se direction at 120 metres above ground level totalling 2,303 line km. The total coverage of the survey amounted to 8,579 line kilometres. The survey was flown using a Shorts Skyvan (SC3-200) aircraft, registration VH-WGT, owned and operated by FAS. The survey was commissioned by the Western Australia Department of Water, and was managed by Geoscience Australia. The Survey received funding from the WA Government's Royalties for Regions program to assess, plan and investigate regional water availability in Western Australia. The data release includes the final contractor supplied datasets. The data are available from Geoscience Australia's web site free of charge. Each data package includes: 1. Point-located electromagnetic data with associated position, altimeter, orientation, magnetic, and derived ground elevation data. These data are in ASCII column format with associated ASEG-GDF2 header files. 2. Point-located conductivity estimates derived using the EM Flow® conductivity depth imaging (CDI) algorithm with associated position, altimeter, magnetic, and derived ground elevation data. Data include the conductivity estimate for each 5 m interval and selected depth slices. These data are in ASCII column format with associated ASEG-GDF2 header files. 3. Gridded data, at 60 or 120 m cell size, for the conductivity depth slices derived from the EM Flow® CDI data, magnetics and elevation data in ER Mapper® binary raster grid format with associated header files. 4. Graphical multiplots, in PDF format, for each flight line showing EM Flow® CDI sections and profiles of electromagnetic data, magnetics, monitors, height and orientation data. 5. Operations Report. 6. Metadata and License files.

  • The 2016 Southern Thomson Orogen VTEM™Plus AEM Survey was conducted by Geoscience Australia as part of a collaborative investigation between the Commonwealth of Australia (Geoscience Australia) and its partners the State of New South Wales (Department of Trade and Investment, Geological Survey of New South Wales) and the State of Queensland (Department of Natural Resources and Mines, Geological Survey of Queensland). The Project aims to better understand the geological character and mineral potential of the southern Thomson Orogen region, focusing on the border between New South Wales and Queensland, by acquiring and interpreting multi-disciplinary geophysical, geochemical and geological data. The primary intended impact of this work is to provide the mineral exploration industry with pre-competitive data and knowledge that reduces risk and encourages mineral exploration in the region. Geoscience Australia contracted Geotech Airborne Pty Ltd to acquire VTEM™Plus AEM data over part of the Southern Thomson Orogen in Queensland and New South Wales in May and June 2016.The data were also processed by Geotech Airborne Ltd using its FullWaveForm® processing techniques. The survey area consists of 2415 line km of time-domain AEM geophysical data acquired in five survey blocks. The majority of traverse lines were spaced at 5000 m in an east-west direction, further details about each blocks flight line specifications can be found in Table 1. The original data supplied by Geotech Airborne Pty Ltd has been modified to contain the final data fields of principal interest, enabling a manageable data file size. This data is available from Geoscience Australia's website free of charge. The comprehensive dataset is available from Geoscience Australia by emailing mineralgeophysics@ga.gov.au. The data release package includes: - Point-located electromagnetic dB/dt and derived B-field data with associated position, altimeter, orientation, magnetic gradiometer, and derived ground elevation data. These data are in ASCII column format with associated README and ASEG-GDF2 header files. The dataset consists of a separate download file for the: - Survey Lines - Repeat lines - Waveform files for every flight containing the 192 kHz sampling of the transmitter current and receiver waveforms. - Point-located conductivity estimates derived using the EM Flow® conductivity depth imaging (CDI) algorithm with associated position, altimeter, orientation, magnetic gradiometer, and derived ground elevation data. Data include the conductivity estimate for each 5 m interval and selected depth slices. - Gridded data, at 1 km cell size in, for the conductivity depth slices derived from the EM Flow® CDI data, magnetics and elevation data in ER Mapper® binary raster grid format with associated header files. - Graphical multiplots, in PDF format, for each flight line showing EM Flow® CDI sections and profiles of Z-component dB/dt data, magnetics, powerline monitor, height and orientation data. - Contractor supplied Operations Report. - ESRI shapefiles and KML files of flight lines. - Metadata and License files.

  • Airborne Electromagnetic data are being acquired by Geoscience Australia in areas considered to have potential for uranium or thorium mineralisation under the Australian Government's Onshore Energy Security Program (OESP). The surveys have been managed and interpreted by Geoscience Australia's Airborne Electromagnetic Acquisition and Interpretation project. Three survey areas were recognised in the Pine Creek AEM survey area: Woolner Granite (TEMPEST), Rum Jungle (TEMPEST) and Kombolgie (VTEM). Industry paid for infill - all of this data has now been released to the public domain and is available at the GA website. In contrast to industry style deposit scale investigations, these surveys are designed to reveal new geological information at regional scale. The Pine Creek airborne electromagnetic data were acquired at line spacing's of between one and five kilometres, a total of 29 000 line km and covers an area of 73 000 km squared. The outcomes of the Pine Creek AEM survey include mapping of subsurface geological features that are associated with unconformity-related, sandstone-hosted and palaeovalley-hosted uranium mineralisation. The data are also capable of interpretation for other commodities including metals and potable water as well as for landscape evolution studies. The improved understanding of the regional geology resulting from the Pine Creek survey results will be of considerable benefit to mining and mineral exploration companies. This Data Package is for Archive to the internal area of the CDS and contains all data, grids, images, mxd, shape files, documentation, licenses, agreements, interpretations and scripts used to create the Pine Creek deliverables. At the projects completion (2012) all directories are required to be moved off the NAS. The reason to keep all the files is that more work is to be done on this data in the 2012-2015 period and these files may be needed in this future work.

  • The record is a presentation given by Adrian Fisher to staff of the Aditya-Birla Nifty copper mine and to staff at the Geological Survey of Western Australia, August 2007. It describes the planning behind the Paterson AEM survey, to be acquired in 2007-2008.

  • Identification of groundwater-dependent (terrestrial) vegetation, and assessment of the relative importance of different water sources to vegetation dynamics commonly involves detailed ecophysiological studies over a number of seasons or years. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Consequently, quicker, more regional mapping approaches have been developed. These new approaches utilise advances in computation geoscience, and remote sensing and airborne geophysical technologies. The Darling River Floodplain, western New South Wales, Australia, was selected as the case study area. This semi-arid landscape is subject to long periods of drought followed by extensive flooding. Despite the episodic availability of surface water resources, two native Eucalyptus species, E. camaldulensis (River Red Gum) and E. largiflorens (Black Box) continue to survive in these conditions. Both species have recognised adaptations, include the ability to utilise groundwater resources at depth. A remote sensing methodology was developed to identify those communities potentially dependent on groundwater resources during the recent millennium drought in Australia.

  • The Broken Hill Managed Aquifer Recharge (BHMAR) project is part of a larger strategic effort aimed at securing Broken Hill's water supply and identifying significant water-saving measures for the Darling River system. Hydrogeological investigations to rapidly identify and assess potential MAR targets and groundwater resources over a large area (>7,500 km2), included acquisition of an airborne electromagnetics (AEM) survey, a 7.5 km drilling program (100 sonic and rotary mud holes), and complementary field and laboratory hydrogeochemical investigations. The study identified an excellent aquifer (the Calivil Formation), with high storage capacity, very high transmissivities (up to 50 l/s), and significant volumes of fresh groundwater. The aquifer is sandwiched between variably thick clay aquitards, and can be characterised as varying from a confined to a 'leaky confined' system. The hydraulic properties make the Calivil Formation aquifer potentially suitable for groundwater extraction and/or MAR injection, with excellent recovery efficiencies predicted. Mapping identified a number of potential suitable locations for MAR options, for which entry-level risk assessments were carried out. Targets were prioritised, and a pre-commissioning semi-quantitative residual risk assessment carried out for a priority site. Assessment of 12 hazard types included hydrogeological modelling, laboratory column clogging studies and geochemical assessment to assess source water treatment requirements. The study found that all of the scientific/technical risks for MAR at the priority target are low. The integrated analysis has identified a range of possible MAR options including injection, passive or enhanced recharge, and/or conjuctive use involving a combination of surface, groundwater extraction and/or MAR options.