upper darling
Type of resources
Keywords
Publication year
Topics
-
<div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>Communities and ecosystems along the Darling-Baaka River have been impacted by critical water shortages and water quality issues including high salinity, algal blooms, and fish kills due to declining surface water flows. The river is characterised by naturally highly variable flows and is the primary water source for the region, but extraction and a meteorological drying trend associated with climate change have caused declines in discharge of 53–73% since the advent of post-settlement agriculture and industry. Understanding of the spatial extent, quality, and useability of lower salinity groundwater within the surrounding Darling Alluvium, which could provide an alternative and potentially more sustainable water source, was previously limited. Here we present the findings of an integrated study combining modelled ground and airborne geophysical data, groundwater and surface water levels, hydrochemistry, lithology, and remote sensing data to delineate groundwater systems and understand the geological and hydrological controls on their occurrence. The resolution and breadth of datasets acquired and collated permit mapping of the key factors controlling occurrence and quality of groundwater aquifers, namely basement topography and hydrostratigraphy, groundwater-surface water dynamics, and inter-aquifer connectivity. On this basis the study area can be sub-divided into regions with distinctive aquifer distribution and quality, recharge mechanisms, and pressure gradients between aquifers. We also showed that the groundwater levels in the unconfined aquifer have declined, an expected outcome of the decline in discharge in the Darling-Baaka River which forms the primary recharge mechanism for the alluvial aquifers. These outputs have direct implications for key management questions including location and quantity of potentially useable groundwater, risk of saline groundwater up-coning or discharging to the river, and likelihood of groundwater extraction impacting river flows and groundwater dependent ecosystems. </div><div><br></div><div><strong>Citation: </strong>Buckerfield, S., McPherson, A., Tan, K.P., Walsh, C., Buchanan, S., Kilgour, P., Suckow, A., Raiber, M., Symington, N. & Pincus, J., 2024. Groundwater systems of the Upper Darling-Baaka River Floodplain. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/149718</div>
-
The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 4 - 16th August talks included: <b>Session 1 – Deep Dives into the Delamerian</b> <a href="https://youtu.be/09knAwPnD7s?si=acdu6pQgIj7DNlnj">Scaffold to success: An overview of the Delamerian Orogen, and its crustal and lithospheric architecture</a> - Chris Lewis <a href="https://youtu.be/5GQC5f5IkWc?si=rLPqxoZFkxGAEPEf">Only time will tell: Crustal development of the Delamerian Orogen in space and time</a> - David Mole <a href="https://youtu.be/PhdIYE49eqU?si=d7acyv5rbTW_wTiO">Is it a big deal? New mineral potential insights of the Delamerian Orogen</a> - Dr Yanbo Cheng <b>Session 2 – Deep dives into Birrindudu, West Musgrave and South Nicholson–Georgina regions</b> <a href="https://youtu.be/DEbkcgqwLE8?si=sBKGaMTq_mheURib">Northwest Northern Territory Seismic Survey: Resource studies and results</a> - Paul Henson <a href="https://youtu.be/k9vwBa1fM9E?si=VOG19nBC1DAk-jGH">Tracing Ancient Rivers: A hydrogeological investigation of the West Musgrave Region</a> - Joshua Lester <a href="https://youtu.be/Du1JANovz8M?si=1XEOF87gxhSP9UF3">Water's journey: Understanding groundwater dynamics in the South Nicholson and Georgina basins, NT and QLD </a>- Dr Prachi Dixon-Jain <b>Session 3 – Groundwater systems of the Curnamona and upper Darling-Baaka River</b> <a href="https://youtu.be/nU8dpekmEHQ?si=WygIzefKNzsU4gUA">Groundwater systems of the upper Darling-Baaka floodplain: An integrated assessment</a> - Dr Sarah Buckerfield <a href="https://youtu.be/AKOhuDEPxIA?si=ebradAT6EBwHhPQ_">Potential for a Managed Aquifer Recharge Scheme in the upper Darling-Baaka floodplain: Wilcannia region</a> - Dr Kok Piang Tan <a href="https://youtu.be/epUdD8ax2FQ?si=_aMO_e_ZDZESgLOR">Aquifer alchemy: Decoding mineral clues in the Curnamona region</a> - Ivan Schroder Exploring for the Future: Final reflection – Karol Czarnota Resourcing Australia’s Prosperity – Andrew Heap View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 4 - Session 1 - <a href="https://www.youtube.com/watch?v=4nuIQsl71cY">Deep Dives into the Delamerian</a> 2024 Showcase Day 4 - Session 2 - <a href="https://www.youtube.com/watch?v=9N3dIZRAcHk">Deep dives into Birrindudu, West Musgrave and South Nicholson–Georgina regions</a> 2024 Showcase Day 4 - Session 3 - <a href="https://www.youtube.com/watch?v=_ddvLAnUdOI">Groundwater systems of the Curnamona and upper Darling-Baaka River</a>
-
<div>This study investigates the feasibility of mapping potential groundwater dependent vegetation (GDV) at a regional scale using remote sensing data. Specifically, the Digital Earth Australia (DEA) Tasseled Cap Percentiles products, integrated with the coefficient of greenness and/or wetness, are applied in three case study regions in Australia to identify and characterise potential terrestrial and aquatic groundwater dependent ecosystems (GDE). The identified high potential GDE are consistent with existing GDE mapping, providing confidence in the methodology developed. The approach provides a consistent and rapid first-pass approach for identifying and assessing GDEs, especially in remote areas of Australia lacking detailed GDE and vegetation information.</div>