From 1 - 3 / 3
  • <div>Geoscience Australia’s Exploring for the Future (EFTF) program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The EFTF program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div>The onshore Canning Basin in Western Australia was the focus of a regional hydrocarbon prospectivity assessment undertaken by the EFTF program dedicated to increasing investment in resource exploration in northern Australia, with the objective being to acquire new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface. As part of this program, significant work has been carried out to deliver pre-competitive data in the region including new seismic acquisition, drilling of a stratigraphic well, and geochemical analysis from historic exploration wells.</div><div>As part of this program, a compilation of the compound-specific isotopic compositions of crude oils from 30 petroleum wells in the Canning Basin have been completed. The samples were analysed in Geoscience Australia’s Isotope and Organic Geochemistry Laboratory and the collated results are released in this report. This report provides additional stable carbon and hydrogen isotopic data to build on the oil-oil correlations previously established by Edwards and Zumberge (2005) and Edwards et al. (2013). This information can be used in future geological programs to determine the origin of the crude oils, and hence increase our understanding of the Larapintine Petroleum Supersystem, as established by Bradshaw (1993) and Bradshaw et al. (1994).</div><div><br></div>

  • <div>The Gas Chromatography-Mass Spectrometry (GC-MS) biomarker database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the molecular (biomarker) compositions of source rock extracts and petroleum liquids (e.g., condensate, crude oil, bitumen) sampled from boreholes and field sites. These analyses are undertaken by various laboratories in service and exploration companies, Australian government institutions and universities using either gas chromatography-mass spectrometry (GC-MS) or gas chromatography-mass spectrometry-mass spectrometry (GC-MS-MS). Data includes the borehole or field site location, sample depth, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular composition of aliphatic hydrocarbons, aromatic hydrocarbons and heterocyclic compounds, which contain either nitrogen, oxygen or sulfur.</div><div><br></div><div>These data provide information about the molecular composition of the source rock and its generated petroleum, enabling the determination of the type of organic matter and depositional environment of the source rock and its thermal maturity. Interpretation of these data enable the determination of oil-source and oil-oil correlations, migration pathways, and any secondary alteration of the generated fluids. This information is useful for mapping total petroleum systems, and the assessment of sediment-hosted resources. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The biomarker data for crude oils and source rocks are delivered in the Petroleum and Rock Composition – Biomarker web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • Petroleum geochemical datasets and information are essential to government for evidence-based decision making on natural resources, and to the petroleum industry for de-risking exploration. Geoscience Australia’s newly built Data Discovery Portal (https://portal.ga.gov.au/) enables digital discoverability and accessibility to key petroleum geochemical datasets. The portal’s web map services and web feature services allow download and visualisation of geochemical data for source rocks and petroleum fluids, and deliver a petroleum systems framework for northern Australian basins. The Petroleum Source Rock Analytics Tool enables interrogation of source rock data within boreholes and field sites, and facilitates correlation of these elements of the petroleum system within and between basins. The Petroleum Systems Summary Assessment Tool assists the user to search and query components of the petroleum system(s) identified within a basin. The portal functionality includes customised data searches, and visualisation of data via interactive maps, graphs and geoscientific tools. Integration of the petroleum systems framework with the supporting geochemical data enables the Data Discovery Portal to unlock the value of these datasets by affording the user a one-stop access to interrogate the data. This allows greater efficiency and performance in evaluating the petroleum prospectivity of Australia’s sedimentary basins, facilitating and accelerating decision making around exploration investment to ensure Australia’s future resource wealth <b>Citation:</b> Edwards, D.S., MacFarlane, S.K., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S., Ray, J. and Raymond, O., 2020. Australian source rocks, fluids and petroleum systems – a new integrated geoscience data discovery portal for maximising data potential. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.