From 1 - 5 / 5
  • The 2017 Olympic Domain Airborne Electro-Magnetic (AEM) Survey was conducted by Geoscience Australia as part of a collaborative project between the Commonwealth of Australia (Geoscience Australia) and its partner the State of South Australia (Department of State Development: Geological Survey of South Australia). Geoscience Australia contracted SkyTEM Australia Pty Ltd to acquire heliborne AEM data over the Olympic Domain in South Australia using their proprietary 312M SkyTEM Interleaved Low Moment and High Moment system trading as "SkyTEMfast". The raw data were processed using SkyTEM Aps Denmark, SkyTEM Australia Pty Ltd’s proprietary software. The survey area consists of 3073.4 line km of time-domain AEM geophysical data acquired in a single survey block located on the 1:250000 map sheets, SH53-12 (Andamooka) and SH53-16 (Torrens) approximately 420 kilometres north-north west of the city of Adelaide, SA. The traverse lines were flown in an East-West orientation with line spacing of 1500 and 3000m. Recent AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) results and modelling across the Gawler Craton have revealed zones of enhanced crustal conductivity at depths of 15-40km in the mid to lower crust along the eastern margin of the craton. These zones coincide with the highly prospective Olympic Domain IOCG belt and may indicate the presence of a mantle plumbing system that contributed to the formation of the mineral systems and deposits in this belt. A key example of this enhanced crustal conductivity exists in the Prominent Hill-Carrapateena-Punt Hill area within the central Olympic domain. The AEM flight line locations were designed to cover these AusLAMP identified deep crustal conductive zone and investigate possible upward continuation of the deep crustal anomaly through the cover sequence. The data have been inverted with the AarhusInv Program using the Aarhus Workbench LCI algorithm. The data release package includes: 1) Point-located Low Moment & High Moment dB/dt electromagnetic data with associated position, altimeter, orientation, and derived ground elevation data. These data are in ASCII column format with associated ASEG-GDF2 header files. 2) Point-located conductivity data derived from the inversion of the observed data with the AarhusInv Program using the Aarhus Workbench LCI algorithm. 3) Gridded data (600m cell size) in ER Mapper® binary raster grid format with associated header files for the conductivity depth slices derived from the Aarhus Workbench LCI data, with and without depth of investigation (DOI) masking. 4) Gridded magnetics and elevation data in ER Mapper® binary raster grid format with associated header files. 5) Graphical multiplots, in PNG format, for each flight line showing Aarhus Workbench LCI model sections (with DOI mask line) with profiles of the Low & High moment Z component dB/dt data and the model fit residual. 6) Contractor supplied Operations Report. 7) ESRI shapefiles of the flight lines. 8) Metadata and License files.

  • This report was compiled and written to summarise the four-year Palaeovalley Groundwater Project which was led by Geoscience Australia from 2008 to 2012. This project was funded by the National Water Commission's Raising National Water Standards Program, and was supported through collaboration with jurisdictional governments in Western Australia, South Australia and the Northern Territory. The summary report was published under the National Water Commission's 'Waterlines' series. This document is supported by related publications such as the palaeovalley groundwater literature review, the WASANT Palaeovalley Map and associated datasets, and four stand-alone GA Records that outline the detailed work undertaken at several palaeovalley demonstration sites in WA, SA and the NT. Palaeovalley aquifers are relied upon in outback Australia by many groundwater users and help underpin the economic, social and environmental fabric of this vast region. ‘Water for Australia’s arid zone – Identifying and assessing Australia’s palaeovalley groundwater resources’ (the Palaeovalley Groundwater Project) investigated palaeovalleys across arid and semi-arid parts of Western Australia (WA), South Australia (SA) and the Northern Territory (NT). The project aimed to (a) generate new information about palaeovalley aquifers, (b) improve our understanding of palaeovalley groundwater resources, and (c) evaluate methods available to identify and assess these systems.

  • <p>The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). <p>The survey design of 200 m spaced lines at a ground clearance of 60 m can be compared with the design of previous regional surveys which generally employed 400 m line spacing and a ground clearance of 80 m. The new survey design results in ~2 x the data coverage and ~25% closer to the ground when compared to previous standards for regional surveys in South Australia. <p>Survey blocks available for download include: <p>Streaky Bay, block 5 <p>Gairdner, block 6A <p>Spencer, block 7 <p>Kingoonya, block 9B <p>The following grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• Dose rate concentration grid (nGy/hr). <p>• Potassium concentration grid (%). <p>• Thorium concentration grid (ppm). <p>• Uranium concentration grid (ppm). <p>• NASVD processed dose rate concentration grid (nGy/hr). <p>• NASVD processed potassium concentration grid (%). <p>• NASVD processed thorium concentration grid (ppm). <p>• NASVD processed uranium concentration grid (ppm). <p>The following point located data are available in this download: <p>• Elevation. Height relative to the Australian Height Datum. Datum: GDA94 <p>• Total Magnetic Intensity. Datum: GDA94 <p>• Radiometrics. Datum: GDA94

  • The role of lithospheric architecture and the mantle in the genesis of iron oxide copper-gold (IOCG) deposits is controversial. Using the example of the Precambrian Gawler Craton (South Australia), which hosts the giant Olympic Dam IOCG deposit, we integrate recently acquired geophysical data (passive seismic tomography, magnetotellurics) with geological and geochemical data to develop a new interpretation of the lithospheric setting of these deposits. Spatially, IOCG deposits are located above the margin of a mantle lithospheric zone with anomalously high electrical conductivities (resistivity <10 ohm.m, top at ~100-150 km depth), low seismic shear-wave velocities (horizontal component, Vsh <4.6 km/s), and unusually high ratios of compressional- to shear-wave velocities (Vp/Vsh>1.80). The high conductivity cannot be explained by water-bearing olivine-rich rock alone. Relatively fertile and metasomatised peridotitic mantle with additional high-Vp/Vs phases, e.g., clinohumite, hydrous garnet and/or phlogopite, could explain the anomalous velocity and conductivity. The top of this high-Vp/Vsh zone marks a mid-lithospheric discontinuity at ~100-130 km depth that is interpreted to reflect locally orthopyroxene-rich mantle. A sub-Moho zone with high Vp/Vsh at ~40-80 km depth correlates spatially with primitive Nd isotope signatures and arc-related ~1620-1610 Ma magmatism, and is interpreted as the eclogitic root of a magmatic arc. Mafic volcanics contemporaneous with ~1590 Ma IOCG mineralisation have geochemistry suggesting derivation from subduction-modified lithospheric mantle. We suggest that Olympic Dam formed inboard of a continental margin in a post-subduction setting, related to foundering and partial melting of previously refertilised and metasomatised lithospheric mantle. Deposits formed during the switch from compression to extension, following delamination-related uplift and exhumation.

  • The Geological Survey of South Australia (GSSA) designed the Gawler Craton Airborne Survey (GCAS) to provide high resolution magnetic, gamma-ray and elevation data covering the northern portion of the Gawler Craton. In total, 1.66 million line km were planned over an area of 295,000 km2 , covering approximately 30% of the state of South Australia. The survey design of 200 m spaced lines at a ground clearance of 60 m can be compared with the design of existing regional surveys which generally employed 400 m line spacing and a ground clearance of 80 m. The new survey design results in ~2 x the data coverage and ~25% closer to the ground when compared to previous standards for regional surveys in South Australia. Due to the enormous scale of the survey, the data were acquired using four contractors who employed ten systems to fly the sixteen blocks. To standardise the data from the multitude of systems, Geoscience Australia (GA) employed a comprehensive set of technical specifications. As part of these specifications the contractors were required to fly each of the ten systems over a series of test lines termed the “Whyalla Test Lines” (Whyalla). The final GCAS data provide truly impressive high resolution regional scale products. These will allow more detailed geological interpretation of the prospective Gawler Craton. Survey blocks available for download include: Tallaringa North, block 1A Tallaringa South, block 1B Coober Pedy West, block 8A Billa Kalina, block 8B Childara, block 9A Lake Eyre, block 10 The following grids are available in this download: • Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. • Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. • Total magnetic intensity grid (nT). • Total magnetic intensity grid with variable reduction to the pole applied (nT). • Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). • Dose rate concentration grid (nGy/hr). • Potassium concentration grid (%). • Thorium concentration grid (ppm). • Uranium concentration grid (ppm). • NASVD processed dose rate concentration grid (nGy/hr). • NASVD processed potassium concentration grid (%). • NASVD processed thorium concentration grid (ppm). • NASVD processed uranium concentration grid (ppm). The following point located data are available in this download: • Elevation. Height relative to the Australian Height Datum. Datum: GDA94 • Total Magnetic Intensity. Datum: GDA94 • Radiometrics. Datum: GDA94