From 1 - 10 / 1858
  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This National Gravity Compilation 2019 (free air grid) is a free air anomaly grid for the 2019 Australian National Gravity Grids A series. This gravity survey was acquired under the project No. 202008. This gravity anomaly grid is derived from ground observations stored in the Australian National Gravity Database (ANGD) as at September 2019, supplemented with offshore data sourced from v28.1 of the Global Gravity grid developed using data from the Scripps Institution of Oceanography, the National Oceanic and Atmospheric Administration (NOAA), and National Geospatial-Intelligence Agency (NGA) at Scripps Institution of Oceanography, University of California San Diego. Out of the approximately 1.8 million gravity observations, nearly 1.4 million gravity stations in the ANGD were used to generate this grid. The ground gravity data used in this grid has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. Station spacing varies from approximately 11 km down to less than 1 km, with major parts of the continent having station spacing between 2.5 and 7 km. The grid shows free air anomalies over Australia and its continental margins with a cell size of 0.00417 degrees (approximately 435m). The data are given in units of um/s^2, also known as 'gravity units', or gu.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This National Gravity Compilation 2019 includes airborne (free air grid) is a free air anomaly grid for the 2019 Australian National Gravity Grids B series. This gravity survey was acquired under the project No. 202008. This gravity anomaly grid is derived from ground observations stored in the Australian National Gravity Database (ANGD) as at September 2019, supplemented with offshore data sourced from v28.1 of the Global Gravity grid developed using data from the Scripps Institution of Oceanography, the National Oceanic and Atmospheric Administration (NOAA), and National Geospatial-Intelligence Agency (NGA) at Scripps Institution of Oceanography, University of California San Diego. Airborne gravity and gravity gradiometry data were also included to provide better resolution to areas where ground gravity data was not of a suitable quality. Out of the approximately 1.8 million gravity observations, nearly 1.4 million gravity stations in the ANGD together with Airborne Gravity surveys totaling 345,000 line km and 106,000 line km of Airborne Gravity Gradiometry were used to generate this grid. The grid shows free air gravity anomalies over Australia and its continental margins. The ground and airborne gravity data used in this grid has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. Station spacing varies from approximately 11 km down to less than 1 km, with major parts of the continent having station spacing between 2.5 and 7 km. Airborne surveys have a line spacing ranging from 0.5 km to 2.5 km. The grid has a cell size of 0.00417 degrees (approximately 435m). The data are given in units of um/s^2, also known as 'gravity units', or gu.

  • Categories  

    Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This National Gravity Compilation 2019 includes airborne (CSCBA) is a complete spherical cap Bouguer anomaly grid for the 2019 Australian National Gravity Grids B series. This gravity survey was acquired under the project No. 202008. The grid has a cell size of 0.00417 degrees (approximately 435m). The data are given in units of um/s^2, also known as 'gravity units', or gu.

  • Categories  

    Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This National Gravity Compilation 2019 (CSCBA) is a complete spherical cap Bouguer anomaly grid for the 2019 Australian National Gravity Grids A series. This gravity survey was acquired under the project No. 202008. This gravity anomaly grid is derived from ground observations stored in the Australian National Gravity Database (ANGD) as at September 2019, supplemented with offshore data sourced from v28.1 of the Global Gravity grid developed using data from the Scripps Institution of Oceanography, the National Oceanic and Atmospheric Administration (NOAA), and National Geospatial-Intelligence Agency (NGA) at Scripps Institution of Oceanography, University of California San Diego. Out of the approximately 1.8 million gravity observations, nearly 1.4 million gravity stations in the ANGD were used to generate this grid. The grid has a cell size of 0.00417 degrees (approximately 435m). The data are given in units of um/s^2, also known as 'gravity units', or gu.

  • Categories  

    Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This National Gravity Compilation 2019 includes airborne (CSCBA 1VD) is the first vertical derivative of the complete spherical cap Bouguer anomaly grid for the 2019 Australian National Gravity Grids B series. This gravity survey was acquired under the project No. 202008. The grid has a cell size of 0.00417 degrees (approximately 435m). A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • Categories  

    Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This National Gravity Compilation 2019 (CSCBA 1VD grid) is the first vertical derivative of the complete spherical cap Bouguer anomaly grid for the 2019 Australian National Gravity Grids A series. This gravity survey was acquired under the project No. 202008. The grid has a cell size of 0.00417 degrees (approximately 435m). A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Gravity Survey (P197953) contains a total of 37 point data values acquired at a spacing of 10500 metres. The data is located in SA and were acquired in 1979, under project No. 197953 for None.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Heathlands Traverses ATP239C, Gravity (P197957) contains a total of 690 point data values acquired at a spacing of 200 metres. The data is located in QLD and were acquired in 1979, under project No. 197957 for Comalco Ltd.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Gravity Survey 79Q2 (P197956) contains a total of 1385 point data values acquired at a spacing of 2000 metres. The data is located in SA and were acquired in 1979, under project No. 197956 for None.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Port Gawler, Underground Gas Storage, Gravity (P197960) contains a total of 770 point data values acquired at a spacing between 50 and 200 metres. The data is located in SA and were acquired in 1979, under project No. 197960 for Department of Mines and Energy South Australia (SADME).