bushfire history
Type of resources
Keywords
Publication year
Topics
-
<div>A package of deliverables for the Australian Research Data Commons (ARDC), Bushfire History Data Project, Work Package 5. If you require further information or access, please contact earth.observation@ga.gov.au</div><div><br></div><div>Outputs generated for this Project are interim and represent a snapshot of work to date, as of September 2023. Deliverables are developmental in nature and are under further advancement. Datasets or visualisations should not be treated as endorsed, authoritative, or quality assured; and should not be used for anything other than a minimal viable product, especially not for safety of life decisions. The eventual purpose of this information is for strategic decisions, rather than tactical decisions. For local data, updates and alerts, please refer to your State or Territory emergency or fire service.</div><div><br></div><div>The purpose of this Project (WP5) was to generate fire history products from Earth observation (EO) data available from the Landsat and Sentinel-2 satellites. WP5 aimed to implement a suite of automated EO-based algorithms currently in use by State and Territory agencies, to produce National-scale data products describing the timing, location, and extent of bushfires across Australia. WP5 outputs are published here as a “deliverable package”, listed as documents, datasets and Jupyter notebooks. </div><div><br></div><div>Burnt area data demonstrators were produced to a Minimum Viable Product level. Four burnt area detection methods were investigated: </div><div>* BurnCube (Geoscience Australia, ANU, (Renzullo et al. 2019)),</div><div>* Burnt Area Characteristics (Geoscience Australia, unpublished methodology),</div><div>* A version of the Victoria’s Random Forest (Victorian, Tasmanian and New South Wales Governments). Based on method as described in Collins et al. (2018), and</div><div>* Queensland’s RapidFire (Queensland Government, (Van den Berg et al. 2021). Please note that demonstrator burnt area data from the Queensland method was only investigated for the Queensland location. Data were sourced from Terrestrial Ecosystem Research Network (TERN) infrastructure, which is enabled by the Australian Government National Collaborative Research Infrastructure Strategy (NCRIS). </div><div><br></div><div>In addition demonstrator products that examine the use of Near Real Time satellite data to map burnt area, data quality and data uncertainty were delivered. </div><div><br></div><div>The algorithms were tested on several study sites:</div><div>* Eastern Victoria,</div><div>* Cooktown QLD,</div><div>* Kangaroo Island SA,</div><div>* Port Hedland WA, and</div><div>* Esperance WA.</div><div><br></div><div>The BurnCube (Renzullo et al. 2019) method was implemented at a national-scale using the Historic Burnt Area Processing Pipeline documented below “GA-ARDC-DataProcessingPipeline.pdf”. Continental-scale interim summary results were generated for both 2020 Calendar Year and 2020 Financial Year. Results were based upon both Landsat 8 and Sentinel-2 (combined 2a and 2b) satellite outputs, producing four separate interim products: </div><div>* Landsat 8, 2020 Calendar Year, BurnCube Summary (ga_ls8c_nbart_bc_cyear_3),</div><div>* Landsat 8, 2020 Financial Year, BurnCube Summary (ga_ls8c_nbart_bc_fyear_3),</div><div>* Sentinel 2a and 2b, 2020 Calendar Year, BurnCube Summary (ga_s2_ard_bc_cyear_3),</div><div>* Sentinel 2a and 2b, 2020 Financial Year, BurnCube Summary (ga_s2_ard_bc_fyear_3).</div><div> </div><div>The other methods have sample products for the study sites, as discussed in the "lineage" section. </div><div><br></div><div>The Earth observation approach has several limitations, leading to errors of omission and commission (ie under estimation and over estimation of the burnt area). Omission errors can result from: lack of visibility due to clouds; small or patchy fires; rapid vegetation regrowth between fire and satellite observation; cool understorey burns being hidden by the vegetation canopy. Commission errors can result from: incorrect cloud or cloud-shadow masking; high-intensity land-use changes (such as cropping); areas of inundation. In addition cloud and shadow masking lead to differences in elapsed time between reference imagery and observations of change resulting in differences in burn area detection. For more information on data caveats please see Section 7.6 of DRAFT-ARDC-WP5-HistoricBurntArea.</div><div><br></div><div>The official Project title is: The Australian Research Data Commons (ARDC), Bushfire Data Challenges Program; Project Stream 1: the ARDC Bushfire History Data Project; Work Package 5 (WP5): National burnt area products analysed from Landsat and Sentinel 2 satellite imagery.</div><div><br></div><div>We thank the Mindaroo Foundation and ARDC for their support in this work.</div>
-
<div>The National Bushfire Historical Extents Dataset (version 3.0) represents the aggregation of jurisdictional supplied burnt areas polygons (except Northern Territory) that date from the late 1800's through to 2024. The burnt areas represent curated jurisdictional owned polygons of both bushfires and prescribed (planned) burns.</div><div><br></div><div>This dataset was produced under Work Stream 1C - Activity 3 of the National Bushfire Intelligence Capability; a collaborative partnership between the Australian Climate Services, CSIRO (NBIC), Geoscience Australia (GA), and the Emergency Management Spatial Information Network (EMSINA). Under agreement this Project (Activity 3) will release a nationally consistent, harmonised and standardised historical bushfire extent dataset derived from the authoritative state and territory agencies. </div><div><br></div><div>The information released within this dataset is reflective of the data supplied by participating authoritative agencies. It may, or may not, represent all fire history within that jurisdiction.</div><div><br></div><div>Apart from small updates to this dataset up until 30 June 2025 there are <strong>no plans</strong> for another major update to this Product. </div>