NAGS
Type of resources
Keywords
Publication year
Topics
-
<p>Australia has a significant number of surface sediment geochemical surveys that have been undertaken by industry and government during the past 50 years. These surveys represent a vast investment, but up to now have been used in isolation from one another. The key to maximising the full potential of these data and the information they provide for mineral exploration, environmental management and agricultural purposes is using all surveys together, seamlessly. These geochemical surveys have not only sampled various landscape elements but have used multiple analytical techniques, instrumentation and laboratories. The geochemical data from these surveys need to be levelled to eliminate, as much as possible, non-geological variation. Using a variety of methodologies, including reanalysis of both international standards and small subsets of samples from previous surveys, we have created a seamless surface geochemical map for northern Australia, from nine surveys with 15605 samples. We tested our approach using two surveys from the southern Thomson Orogen, which removed interlaboratory and other analytical variation. Creation of the new combined and levelled northern Australian dataset paves the way for the application of statistical techniques, such as principal component analysis and machine learning, which maximise the value of these legacy data holdings. The methodology documented here can be applied to additional geochemical datasets that become available. <p><b>Citation:</b> Main, P. T. and Champion, D. C., 2020. Geochemistry of the North Australian Craton: piecing it together. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
Soil geochemistry has been used to discover many mineral deposits in Australia. Further, it places first-order controls on soil fertility in agriculture and can be used to monitor the environment. With this utility in mind, an extensive soil sampling survey was undertaken as part of the Exploring for the Future program across the vast prospective exploration frontier between Tennant Creek and Mount Isa, dubbed the Northern Australia Geochemical Survey (NAGS). In all, 776 stream sediment outlet samples were collected at a depth of 0–10 cm, improving the density of the National Geochemical Survey of Australia by an order of magnitude, to one sample per ~500 km2. Two size fractions from each sample were analysed for a comprehensive suite of chemical elements after total digestion, Mobile Metal Ion™ (MMI) and aqua regia extractions, and fire assay. Here, we highlight the applicability of these results to base metal exploration, evaluation of soil fertility for agriculture and establishment of geochemical baselines. Our results reveal an association between elevated concentrations of commodity or pathfinder elements in the same or downstream catchments as known mineral deposits. Similar features elsewhere suggest new areas with potential for base metal discovery. <b>Citation:</b> Bastrakov, E.N. and Main, P.T., 2020. Northern Australia Geochemical Survey: a review of regional soil geochemical patterns. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.