Environmental Radioactivity
Type of resources
Keywords
Publication year
Topics
-
Preamble -- The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (doi: 10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Plutonium Isotopes Dataset. Abstract -- Seventy three fine-fraction (<75 um) Top Outlet Sediment (TOS, 0 – 10 cm depth) NGSA samples from Queensland were analysed for the plutonium (Pu) isotopes 238Pu and 239+240Pu (unresolved 239Pu and 240Pu) to determine: (1) if Pu is detectable in the Australian environment; and (2) what the levels and ranges of Pu retention in selected Queensland catchment soils are. Radiochemical analyses were performed by alpha spectrometry at the radioanalytical laboratories of Radiation and Nuclear Sciences, Department of Health, Queensland, and at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Victoria. The method yielded a 239+240Pu trace-level detection limit of 0.04 mBq/g (equivalent to 10.4 fg/kg or 0.0056 net counts per minute) with a relative standard deviation (RSD) of 15.1%. The average tracer recovery was 69% (RSD 25%) over a 3-day count. Total analytical uncertainty ranged from 19% to 90% at close to detection limits. Field duplicate repeatability for 239+240Pu activity concentration ranged from 18% to 45%, which in part at least reflects the inherent heterogeneity of soil/sediments containing refractory particles exhibiting variation in Pu activity concentrations. Analytical duplicate repeatability for 239+240Pu activity concentration ranged from 10% to 23%, with the mean activity concentration and error of the replicates reported with propagation of errors. The results show a wide range of 239+240Pu activity concentration in the fine TOS NGSA samples across Queensland (N = 73): 239+240Pu: Min = <0.04 mBq/g; Med ± MAD (median absolute deviation) = 0.09 ± 0.07 mBq/g; Mean ± SD = 0.29 ± 0.72 mBq/g; 95th percentile = 1.53 mBq/g; Max = 4.88 mBq/g. In comparison the world average background is estimated at 0.2 mBq/g. Analytical results for 39% of samples were below detection. Six samples with 239+240Pu > 0.18 mBq/g (70th percentile) were also analysed for 238Pu by the same alpha spectrometry method. Results ranged from 0.04 to 0.1 mBq/g (N = 6). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (https://pid.geoscience.gov.au/dataset/ga/144101).