From 1 - 10 / 68
  • Australia remains underexplored or unexplored, boasting discovery potential in the mineral, groundwater, and energy resources hidden beneath the surface. These “greenfield” areas are key to Australia’s future prosperity and sustainability. Led by Geoscience Australia, Australia’s national government geoscience organisation, the Exploring for the Future program was a groundbreaking mission to map Australia’s mineral, energy, and groundwater systems in unparalleled scale and detail. The program has advanced our understanding of Australia’s untapped potential. Over the course of 8 years, the Exploring for the Future program provided a significant expansion of public, precompetitive geoscience data and information, equipping decision-makers with the knowledge and tools to tackle urgent challenges related to Australia’s resource prosperity, energy security, and groundwater supply.

  • <div>Alkaline igneous and related rocks are recognised as a significant source of the critical minerals essential for Australia’s transition to net-zero. Understanding these small but economically significant group of poorly mapped rocks is essential for identifying their resource potential. The Australian Alkaline Rocks Atlas aims to capture all known occurrences of these volumetrically minor, but important, igneous rocks in a national compilation, to aid understanding of their composition, distribution and age at the continental scale. The Atlas, comprises five, stand-alone data packages covering the Archean, Proterozoic, Paleozoic, Mesozoic and Cenozoic eras. Each data package includes a GIS database and detailed accompanying report that informs alkaline rock nomenclature, classification procedures, individual units and their grouping into alkaline provinces based on common age, characteristics and inferred genesis. The Alkaline Rocks Atlas will form a foundation for more expansive research on related mineral systems and their corresponding economic potential being undertaken as part of the EFTF program. To illustrate the use of the Alkaline Rocks Atlas, a mineral potential assessment using a subset of the Atlas has been undertaken for carbonatite-related rare earth element mineral systems that aims to support mineral exploration and land-use decision making that aims to support mineral exploration and land-use decision making.</div>

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although Alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation.</div><div><br></div><div>This GIS product is part of an ongoing compilation of the distribution and geology of alkaline and related rocks throughout Australia. The accompanying report document alkaline and related rocks of Cenozoic age.</div>

  • <div>Strontium isotopes (87Sr/86Sr) are useful in the earth sciences (e.g. recognising geological provinces, studying geological processes) as well in archaeological (e.g. informing on past human migrations), palaeontological/ecological (e.g. investigating extinct and extant taxa’s dietary range and migrations) and forensic (e.g. validating the origin of drinks and foodstuffs) sciences. Recently, Geoscience Australia and the University of Wollongong have teamed up to determine 87Sr/86Sr ratios in fluvial sediments selected mostly from the low-density National Geochemical Survey of Australia (NGSA; www.ga.gov.au/ngsa). The present study targeted the Yilgarn geological region in southwestern Australia. The samples were mostly taken from a depth of ~60-80 cm (Bottom Outlet Sediments, BOS) in floodplain deposits at or near the outlet of large catchments (drainage basins). A small number of surface (0-10 cm) samples (Top Outlet Sediments, TOS) were also included in the study. For all, a coarse grain-size fraction (<2 mm) was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release total strontium. Overall, 107 NGSA BOS < 2 mm and 13 NGSA TOS < 2 mm were analysed for Sr isotopes. Given that there are ~10 % field duplicates in the NGSA, all those samples originate from within 97 NGSA catchments, which together cover 533 000 km2 of southwestern Australia. Preliminary results for the BOS samples demonstrate a wide range of strontium isotopic values (0.7152 < 87Sr/86Sr < 1.0909) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and smooth gradients), large-scale (>100 km) patterns that appear to be consistent, in many places, with surface geology, regolith/soil type and/or nearby outcropping bedrock. For instance, catchments in the western and central Yilgarn dominated by felsic intrusive basement geology have radiogenic 87Sr/86Sr signatures in the floodplain sediments consistent with published whole-rock data. Similarly, unradiogenic signatures in sediments in the eastern Yilgarn are in agreement with published whole-rock data. Our results to-date indicate that incorporating soil/regolith strontium isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting strontium isoscape and model derived therefrom can also be utilised in archaeological, paleontological and ecological studies that aim to investigate past and modern animal (including humans) dietary habits and migrations.&nbsp; The new spatial dataset is publicly available through the Geoscience Australia portal https://portal.ga.gov.au/.</div>

  • <div>Strontium isotopes (87Sr/86Sr) are useful to trace processes in the Earth sciences as well as in forensic, archaeological, palaeontological, and ecological sciences. As very few large-scale Sr isoscapes exist in Australia, we have identified an opportunity to determine 87Sr/86Sr ratios on archived fluvial sediment samples from the low-density National Geochemical Survey of Australia (www.ga.gov.au/ngsa; last access: 15 December 2022). The present study targeted the northern parts of Western Australia, the Northern Territory and Queensland, north of 21.5 °S. The samples were taken mostly from a depth of ~60-80 cm in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse (< 2 mm) grain-size fraction was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release <em>total</em> Sr. The Sr was then separated by chromatography and the 87Sr/86Sr ratio determined by multicollector-inductively coupled plasma mass spectrometry. Results demonstrate a wide range of Sr isotopic values (0.7048 to 1.0330) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and smooth gradients), large-scale (> 100 km) patterns that appear to be broadly consistent with surface geology, regolith/soil type, and/or nearby outcropping bedrock. For instance, the extensive black clay soils of the Barkly Tableland define a > 500 km-long northwest-southeast-trending unradiogenic anomaly (87Sr/86Sr < 0.7182). Where sedimentary carbonate or mafic/ultramafic igneous rocks dominate, low to moderate 87Sr/86Sr values are generally recorded (medians of 0.7387 and 0.7422, respectively). In proximity to the outcropping Proterozoic metamorphic basement of the Tennant, McArthur, Murphy and Mount Isa geological regions, conversely, radiogenic 87Sr/86Sr values (> 0.7655) are observed. A potential correlation between mineralisation and elevated 87Sr/86Sr values in these regions needs to be investigated in greater detail. Our results to-date indicate that incorporating soil/regolith Sr isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting Sr isoscape and future models derived therefrom can also be utilised in forensic, archaeological, paleontological and ecological studies that aim to investigate, e.g., past and modern animal (including humans) dietary habits and migrations. The new spatial Sr isotope dataset for the northern Australia region is publicly available (de Caritat et al., 2022a; https://dx.doi.org/10.26186/147473; last access: 15 December 2022).</div> <b>Citation:</b> de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of northern Australia, <i>Earth Syst. Sci. Data</i>, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, <b>2023</b>.

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although Alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation.</div><div><br></div><div>This GIS product is part of an ongoing compilation of the distribution and geology of alkaline and related rocks throughout Australia. The accompanying report document alkaline and related rocks of Paleozoic age.</div>

  • <div>Near-surface magnetizations are ubiquitous across many areas of Australia and complicate reliable estimation of depth to deeper magnetizations. We have selected four test areas in which we use equivalent source dipoles to represent and quantify the near-surface magnetizations. We present a synthetic modelling study that demonstrates that field variations from the near-surface magnetizations substantially degrade estimation of depth to a magnetization 500 metres below the modelled sensor elevation and that these problems persist even for anomalies with significantly higher amplitudes. However, preferential attenuation of the fields from near surface magnetizations by upward continuation proved quite effective in improving estimation of depth to those magnetizations.</div> This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically thought to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earths mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and/ or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.&nbsp;</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere. They are also directly related to metallogenesis and mineralisation, particularly for a number of the critical minerals, e.g., rare earth elements, niobium. In light of this, Geoscience Australia is undertaking a compilation of the distribution and geology of Australian alkaline and related rocks, of all ages, and producing a GIS and associated database of such rocks, to both document such rocks and for use in metallogenic and mineral potential studies.</div><div><br></div><div>This contribution presents data on the distribution and geology of Australian alkaline and related rocks of Cenozoic age. The report and accompanying GIS document the distribution, age, lithology, mineralogy and other characteristics of these rocks (e.g. extrusive/intrusive, presence of mantle xenoliths, presence of diamonds), as well as references for data sources and descriptions. The report also reviews the nomenclature of alkaline rocks and classification procedures. GIS metadata are documented in the appendices.</div><div><br></div><div>Cenozoic alkaline and related rocks occur primarily within a belt running from Northeastern Queensland, through eastern New South Wales into Victoria and through to South Australia and Tasmania with a single occurrence in Western Australia. Compositions range from peralkaline trachytic and rhyolitic rocks to lamprophyric rocks to alkali basalts and more undersaturated feldspathoid-bearing lithologies. Ages span the entire Cenozoic but locally and regionally are more restrictive. Bodies are generally of small volume (extrusive rocks) or of small size (intrusive rocks). On the basis of location (and lithology, age and/or alkaline classification), 332 individual geologic units have been grouped into 59 informal alkaline provinces. The latter provides a simplified broad-scale overview of the distribution of the Cenozoic alkaline and related rocks of Australia but also allows for better search capabilities at broad scales in the GIS environment (overcoming the small size of many alkaline bodies).</div>

  • <div>The Exploring for the Future program (EFTF) is a $225M Federal Government-funded initiative spanning the period July 2016 to June 2024. This multi-disciplinary program involves aspects of method development and new pre-competitive data acquisition at a variety of scales, with the aim of building an integrated understanding of Australia’s mineral, energy and groundwater potential. Significant work has been undertaken across northern Australia within regional-scale projects and as part of national-scale data acquisition and mapping activities. Some of these activities have been largely completed, and have generated new data and products, while others are ongoing. A comprehensive overview of the EFTF program can be found via the program website (eftf.ga.gov.au). Here, we overview a range of activities with implications for resource exploration in the Northern Territory.</div><div><br></div>This Abstract was submitted & presented to the 2023 Annual Geoscience Exploration Seminar (AGES), Alice Springs (https://industry.nt.gov.au/news/2022/december/registrations-open-for-ages-2023)

  • <div>The production of rare earth elements is critical for the transition to a low carbon economy. Carbonatites (&gt;50% carbonate minerals) are one of the most significant sources of rare earth elements (REEs), both domestically within Australia, as well as globally. Given the strategic importance of critical minerals, including REEs, for the Australian national economy, a mineral potential assessment has been undertaken to evaluate the prospectivity for carbonatite-related REE (CREE) mineralisation in Australia. CREE deposits form as the result of lithospheric- to deposit-scale processes that are spatially and temporally coincident.</div><div><br></div><div>Building on previous research into the formation of carbonatites and their related REE mineralisation, a mineral system model has been developed that incorporates four components: (1) source of metals, fluids, and ligands, (2) energy sources and fluid flow drivers, (3) fluid flow pathways and lithospheric architecture, and (4) ore deposition. This study demonstrates how national-scale datasets and a mineral systems-based approach can be used to map the mineral potential for CREE mineral systems in Australia.</div><div><br></div><div>Using statistical analysis to guide the feature engineering and map weightings, a weighted index overlay method has been used to generate national-scale mineral potential maps that reduce the exploration search space for CREE mineral systems by up to ∼90%. In addition to highlighting regions with known carbonatites and CREE mineralisation, the mineral potential assessment also indicates high potential in parts of Australia that have no previously identified carbonatites or CREE deposits.</div><div><br></div><div><b>Citation: </b>Ford, A., Huston, D., Cloutier, J., Doublier, M., Schofield, A., Cheng, Y., and Beyer, E., 2023. A national-scale mineral potential assessment for carbonatite-related rare earth element mineral systems in Australia, <i>Ore Geology Reviews</i>, V. 161, 105658. https://doi.org/10.1016/j.oregeorev.2023.105658</div>