From 1 - 2 / 2
  • <div>The wind hazard climate in South East Queensland is a combination of tropical cyclones, thunderstorms and synoptic storms. This dataset provides estimated average recurrence interval (ARI) or annual exceedance probability (AEP) wind speeds over the region, based on an evaluation of observational (thunderstorms and synoptic winds) and simulated data (tropical cyclones). </div><div><br></div><div>The tropical cyclone wind hazard was evaluated using Geoscience Australia's Tropical Cyclone Risk Model (TCRM), which provides a spatial representation of the AEP wind speeds arising from tropical cyclones. Thunderstorm wind hazard was evaluated from analysis of observed wind gusts across South East Queensland, aggregated into a single 'superstation' to provide a single representative hazard profile for the region.</div><div><br></div><div>The resulting combined wind hazard estimates reflect the dominant source of wind hazard in South East Queensland for the most frequent events (exceedance probabilities greater than 1:50) is thunderstorm-generated wind gusts. For rarer events, with exceedance probabilities less than 1:200, TC are the dominant source of extreme gusts.&nbsp;</div><div><br></div><div>Local effects of topography, land cover and the built environment were incorporated via site exposure multipliers (Arthur & Moghaddam, 2021), which are based on the site exposure multipliers defined in AS/NZS 1170.2 (2021).</div><div><br></div><div>The local wind hazard maps were used to evaluate the financial risk to residential separate houses in South East Queensland.</div><div><br></div><div>Wind speeds are provided for average recurrence intervals ranging from 1 year to 10,000 years. No confidence intervals are provided in the data. </div>

  • <div>The Severe Wind Hazard Assessment for South East Queensland (SWHA-SEQ) analysed risk from severe wind events in a marginal tropical cyclone (TC) region with a large exposed population, and historical severe thunderstorm and TC impacts. SWHA-SEQ was a collaborative effort bringing together 15 partners across government, academia and the insurance sector to improve the collective understanding of wind risk in the region and inform future strategies to reduce this risk, in the context of climate change, urban planning and socio-economic status of the population. </div><div>The project involved enhancing the understanding of hazard, exposure and physical vulnerability to strengthen the comprehension of risk, including local-scale wind hazard from thunderstorm and TC wind gusts, and a semi-quantitative analysis of future wind hazard. Structural characteristics of residential housing stock were updated through a combination of street surveys, national databases of built assets and insurance portfolio statistics. Vulnerability models for residential houses including retrofitted models for 5 common house types were developed, alongside identification of key vulnerability factors for residential strata buildings.</div><div>Local governments are building on the outcomes of the project, with the City of Gold Coast using the project outcomes as the key evidence base for a A$100m investment over 7 years to advocate for uplift of building design criteria, targeted community engagement and resilience of City-owned infrastructure. Other local governments have conducted specific exercises exploring how they would manage a severe TC impact. The investments and activities directly flowing from SWHA-SEQ are testament to the partner engagement through the project. Presented at the 2024 Symposium on Hurricane Risk in a Changing Climate (SHRCC2024)