From 1 - 4 / 4
  • <div>Maps showing the potential for iron oxide copper-gold (IOCG) mineral systems in Australia. Each of the mineral potential maps is a synthesis of four component layers (source of metals, fluids and ligands; energy sources and fluid flow drivers; fluid flow pathways and architecture; and ore depositional gradients). The model uses a hybrid data-driven and knowledge driven methodology to produce the final mineral potential map for the mineral system. An uncertainty map is provided in conjunction with the mineral potential maps that represents the availability of data coverage over Australia for the selected combination of input maps. Uncertainty values range between 0 and 1, with higher uncertainty values being located in areas where more input maps are missing data or have unknown values. The input maps and mineral deposits and occurrences used to generate the mineral potential map are provided along with an assessment criteria table which contains information on the map creation.</div>

  • Mineral exploration in Australia faces the challenge of declining discovery rates despite continued exploration investment. The UNCOVER roadmap, developed by stakeholders from industry, government and academia, has highlighted the need for discovering mineral resources in areas of cover. In these areas, potentially prospective basement is covered by regolith, including transported sediment, challenging many traditional exploration methods designed to probe outcrop or shallow subcrop. Groundwater-mineral interaction in the subsurface has the potential to give the water geochemical and isotopic characteristics that may persist over time and space. Geoscience Australia’s hydrogeochemistry for mineral exploration project, part of the Exploring for the Future Programme, aims to use groundwater chemistry to better understand the bedrock-regolith system and develop new methods for recognising mineral system footprints within and below cover. During the 2017 dry season (May to September), ~150 groundwater samples (including QC samples) were collected from pastoral and water supply bores in the regions of Tennant Creek and McArthur River, Northern Territory. The Tennant Creek region has a demonstrated iron oxide-hosted copper-gold-iron(-bismuth) mineral potential in the Paleoproterozoic and Mesoproterozoic basement and vast areas of regolith cover. Among the critical elements of this mineral system, the presence/absence of redox contrasts, iron enrichment, presence of sulfide minerals, and carbonaceous intervals can potentially be diagnosed by the elemental and isotopic composition of groundwater. The McArthur River region, in contrast, has demonstrated sediment-hosted stratiform lead-zinc-silver mineral potential in the Paleoproterozoic to Neoproterozoic basement and also vast areas of regolith cover. Here, critical mineral system elements that have the potential to be identified using groundwater geochemistry include the presence of felsic rocks (lead source), carbonate rocks (zinc source), basinal brines, dolomitic black shales (traps), and evaporite-rich sequences. Preliminary results will be presented and interpreted in the context of these mineral systems.

  • <div><strong>Output type:</strong> Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short abstract: </strong>Iron oxide copper-gold (IOCG) deposits are a significant source of copper and gold and can also contain critical minerals that are required for the transition to a low carbon economy and to increase Australia’s security of mineral supply. Given their strategic importance, a national-scale assessment of the mineral potential for IOCG mineral systems in Australia has been undertaken using a hybrid data- and knowledge-driven approach. The national-scale assessment includes the evaluation of the statistical importance of mappable criteria used in previously published regional-scale IOCG models, resulting in the removal of five criteria and the inclusion of four new or revised criteria derived from datasets developed through the Exploring for the Future program. The new mineral potential model successfully predicts the location of 91.7% of known IOCG deposits and occurrences in 8.3% of the area, reducing the exploration search space by 91.7% and highlighting new areas of elevated prospectivity in under-explored regions of Australia. When compared to existing regional-scale mineral potential assessments for IOCG mineral systems published by Geoscience Australia, the new national-scale model demonstrates higher prospectivity in areas with known IOCG deposits and occurrences, while also highlighting new prospective areas for IOCG mineral systems. Areas with assessed high prospectivity but lacking known IOCG mineralisation include parts of the Curnamona, Etheridge and Musgrave provinces, and the Delamerian, Halls Creek and Tanami orogens.</div> <div><strong>Citation</strong>: Cloutier J., et al., 2024. First national mineral system assessment of Australia's iron oxide copper-gold potential. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149357</div>

  • Hydrothermal magnetite from the Starra iron oxide‑copper gold (IOCG) deposit in northwest Queensland, Australia, records a gradual decrease in V, Ni, Cr, and Mn that correlates with the transition from early, amphibole-biotite-magnetite dominant alteration to late, chlorite-quartz-hematite-dominated alteration assemblages. The observed systematic change in multivariate elements in magnetite is interpreted to indicate an increase in fO2 during the main Cu(Au) mineralization. We suggest that variations in the V, Ni, and Cr contents of magnetite at Starra indicate either a primary magmatic fluid source or the leaching of mafic rocks by fluids during early albitization. Late silician magnetite contained in ankerite veins that crosscut the pre-existing alteration assemblages in the hanging wall to the Starra 222 ore body is likely the result of a second mineralization phase, which contributed additional metals to the Starra ore bodies. Existing data on magnetite chemistry from several IOA, IOCG, Fe, and Fe-W skarn deposits show that the ratio of V to Ga discriminates the various ore types effectively. Skarn deposits are separated from IOA and IOCG by lower concentrations of V, Ni, and Cr, suggesting a more primitive fluid source or the precipitation of magnetite at distinct physicochemical conditions than IOA and IOCG deposits. Magnetite from IOA deposits exhibits a consistently elevated V concentration whereas magnetite from Fe(–– W) skarn records an increase in V concentration with the evolution of the system. A pronounced decrease in the V contents of magnetite associated with Cu Au mineralization at Starra is interpreted as a change in redox conditions from reduced to oxidized at the time of mineralization. Such variations are also observed in other IOCG deposits. We propose that systematic decreases in V concentration in magnetite during the paragenetic evolution of the host mineral system is a diagnostic indicator for Cu(Au) mineralization in IOCG deposits, and as such, it may be used as a proxy for Cu-Au exploration, if the paragenetic context of magnetite is well constrained. <b>Citation:</b> Max Hohl, Jeffrey A. Steadman, Jonathan Cloutier, Shaun L.L. Barker, Ivan Belousov, Karsten Goemann, David R. Cooke, Trace element systematics of magnetite from the Starra iron oxide‑copper gold deposits reveals early fluid conditions characteristic for Cu mineralization, <i>Chemical Geology</i>, Volume 648, 2024, 121960, ISSN 0009-2541, https://doi.org/10.1016/j.chemgeo.2024.121960