From 1 - 10 / 26
  • Modern probabilistic seismic hazard assessments rely on earthquake catalogs consistently expressed in terms of moment magnitude, MW. However, MW is still not commonly calculated for small local events by many national networks. The preferred magnitude type calculated for local earthquakes by Australia’s National Earthquake Alerts Centre is local magnitude, ML. For use in seismic hazard forecasts, magnitude conversion equations are often applied to convert ML to MW. Unless these conversions are time-dependent, they commonly assume that ML estimation has been consistent for the observation period. While Australian-specific local magnitude algorithms were developed from the late 1980s and early 1990s, regional, state and university networks did not universally adopt these algorithms, with some authorities continuing to use Californian magnitude algorithms. Californian algorithms are now well-known to overestimate earthquake magnitudes for Australia. Consequently, the national catalogue contains a melange of contributing authorities with their own methods of magnitude estimation. The challenge for the 2018 National Seismic Hazard Assessment of Australia was to develop a catalog of earthquakes with consistent local magnitudes, which could then be converted to MW. A method was developed that corrects magnitudes using the difference between the original (inappropriate) magnitude formula and the Australian-specific corrections at a distance determined by the nearest recording station likely to have recorded the earthquake. These corrections have roughly halved the rates of ML 4.5 earthquakes in the Australian catalogue. To address ongoing challenges for catalog improvement, Geoscience Australia is digitising printed and hand-written observations preserved on earthquake data sheets. Once complete, this information will provide a valuable resource that will allow for further interrogation of pre-digital data and enable refinement of historical catalogs. Presented at the 2019 Seismological Society of America Conference, Seattle in the special session on “Seismology BC(d)E: Seismology Before the Current (digital) Era”

  • Geoscience Australia has produced a draft National Seismic Hazard Assessment (NSHA18), together with contributions from the wider Australian seismology community. This paper provides an overview of the provisional peak ground acceleration (PGA) hazard values and discusses rationale for changes in the proposed design values at the 1/500-year annual exceedance probability (AEP) level relative to Standards Australia’s AS1170.4–2007 design maps. The NSHA18 update yields many important advances on its predecessors, including: consistent expression of earthquake magnitudes in moment magnitude; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model; inclusion of epistemic uncertainty on fault-slip-model magnitude-frequency distributions and earthquake clustering; and the use of modern ground-motion models through a weighted logic tree framework. In general, the 1/500-year AEP seismic hazard values across Australia have decreased relative to the earthquake hazard factors the AS1170.4–2007, in most localities significantly. The key reasons for the decrease in seismic hazard factors are due to: the reduction in the rates of moderate-to-large earthquakes through revision of earthquake magnitudes; the increase in b-values through the conversion of local magnitudes to moment magnitudes, particularly in eastern Australia, and; the use of modern ground-motion attenuation models. Whilst the seismic hazard is generally lower than in the present standard, we observe that the relative proportion of the Australian landmass exceeding given PGA thresholds is consistent with other national hazard models for stable continental regions. Abstract presented at the 2017 Australian Earthquake Engineering Society (AEES) Conference

  • We present the first paleoseismic investigation of the Hyde Fault, one of a series of north-east striking reverse faults within the Otago range and basin province in southern New Zealand. Surface traces of the fault and associated geomorphology were mapped using a lidar digital elevation model and field investigations. Trenches were excavated at two sites across fault scarps on alluvial fan surfaces. The trenches revealed stratigraphic evidence for four surface-rupturing earthquakes. Optically stimulated luminescence dating constrains the timing of these events to around 47.2 ka (37.5–56.7 ka at 95% confidence), 34.6 ka (24.7–46.4 ka),23.5 ka (19.7–27.3 ka) and 10.5 ka (7.9–13.1 ka). We obtain a mean inter-event time of12.4 kyr (2.3–23.9 kyr at 95% confidence) and the slip rate is estimated to be 0.22 mm/yr (0.15–0.3 mm/yr). We do not find evidence to suggest that earthquake recurrence on the Hyde Fault is episodic, in contrast to other well-studied faults within Otago, suggesting diverse recurrence styles may co-exist in the same fault system. This poses challenges for characterising the seismic hazard potential of faults in the region, particularly when paleoearthquake records are limited to the most recent few events. <b>Citation:</b> Jonathan D. Griffin, Mark W. Stirling, David J.A. Barrell, Ella J. van den Berg, Erin K. Todd, Ross Nicolls & Ningsheng Wang (2022) Paleoseismology of the Hyde Fault, Otago, New Zealand, <i>New Zealand Journal of Geology and Geophysics</i>, 65:4, 613-637, DOI: 10.1080/00288306.2021.1995007

  • An earthquake catalogue based on the moment magnitude scale is required for calculation of seismic hazard in Australia. However, the estimation of moment magnitudes for small to moderate sized earthquakes is not a routine process at seismic observatories, resulting in a catalogue mainly based on the local magnitude scale for Australia. In this study we explore the application of an automated procedure to estimate moment magnitudes by minimizing the misfit between observed and synthetic displacement spectra. We compile a reference catalogue of 15 earthquakes with moment magnitude values between 3.8 and 5.4 which were based on previous studies. The moment magnitudes were then recalculated and we find that the estimated moment magnitudes are in good agreement with reference values with differences mainly lower than 0.2. However, the reported local magnitudes of the selected events are consistently higher than the reference values with differences between 0.3 and 1.0. The automated procedure will be applied to compute moment magnitudes of the well recorded events in Australia, and to derive a scaling relation between local magnitude and moment magnitude. This abstract was submitted and presented to the 2016 Australian Earthquake Engineering Society Conference (AEES) ( https://aees.org.au/aees-asian-seismological-commission-conferences/)

  • We present a preliminary probabilistic seismic hazard analysis (PSHA) of a site in the Otway basin, Victoria, Australia, as part of the CO2CRC Otway Project for CO2 storage risk. The study involves estimating the likelihood of future strong earthquake shaking at the site and utilizes three datasets: (1) active faults, (2) historical seismicity, and (3) geodetic surface velocities. Our analysis of geodetic data reveals strain rates at the limit of detectability and not significantly different from zero. Consequently, we do not develop a geodetic-based source model for this Otway model. We construct logic trees to capture epistemic uncertainty in both the fault and seismicity source parameters and in the ground-motion prediction. A new feature for seismic hazard modeling in Australia, and rarely dealt with in low-seismicity regions elsewhere, is the treatment of fault episodicity (long-term activity versus inactivity) in our Otway model. Seismic hazard curves for the combined (fault and distributed seismicity) source model show that hazard is generally low, with peak ground acceleration estimates of less than 0.1g at annual probabilities of 10-3-10-4/yr. Our preliminary analysis therefore indicates that the site is exposed to a low seismic hazard that is consistent with the intraplate tectonic setting of the region and unlikely to pose a significant hazard for CO2 containment and infrastructure.

  • A shallow MW 5.3 earthquake near Lake Muir in southwest Western Australia on the 16 September 2018 was followed on the 8 November by a co-located MW 5.2 event in the same region. Sentinel-1 synthetic aperture radar interferograms (InSAR) allowed for the timely identification and mapping of the surface deformation relating to both earthquakes. Field mapping, guided by the InSAR observations, revealed that the first event produced an approximately 3 km-long and up to 0.4 m-high west-facing surface rupture. Five seismic rapid deployment kits (RDKs) were installed in the epicentral region within three days of the 16 September event. These data, telemetered to Geoscience Australia’s National Earthquake Alerts Centre, have enabled the detection and location of more than 750 dependent events up to ML 4.6. Preliminary joint hypocentre relocation of aftershocks using data from RDKs confirms an easterly dipping rupture plane for the first MW 5.3 event. The main shocks were recorded throughout the Australian National Seismic Network, in addition to a local broadband network in the Perth Basin operated by University of Texas at Dallas and the University of Western Australia. These data indicate large long-period ground-motions due to Rg phases and basin amplification. The two main shocks were widely felt within the region, including the Perth metro region (300 km away), with over 2400 online felt reports for the 8 November event. The Lake Muir sequence represents the ninth recorded surface rupturing earthquake in Australia in the past 50 years. All of these events have occurred in the Precambrian cratonic terranes of western and central Australia, in unanticipated locations. Paleoseismic studies of these ruptures found no evidence for regular recurrence of large events on the underlying faults. The events might therefore be considered “one-offs” at timescales of significance to typical probabilistic seismic hazard studies. Presented at 2019 Seismological Society of America Conference, Seattle in the special session on “Central and Eastern North America and Intraplate Regions Worldwide”

  • The Devil’s Mountain fault is an active fault included in the 2014 USGS hazard model for Washington State. Recent neotectonic investigations have suggested that a west-northwestwards extension of the fault (the Leech River fault) has sea-bottom and onshore evidence pointing to recurrent young offsets. Accordingly, a logic tree model for the Leech River – Devil’s Mountain fault system (LRF-DMF) incorporating various fault lengths, slip rates of 0.25 mm/yr with upper and lower alternatives of 0.15 and 0.35 mm/yr, and interactions between the faults was developed and added to Canada’s 6th Generation seismic hazard model. The LRF was given a 50% chance of being active. Although the slip rate is low for an active tectonic region, the fault system passes through greater Victoria, British Columbia, and contributes to the overall seismic hazard for southernmost Vancouver Island. We calculate the hazard in greater Victoria with and without the LRF-DMF in order to estimate its effect. The hazard in downtown Victoria is already high (coming mainly from in-slab sources at short periods and the Cascadia subduction zone at long periods) and decreases slowly northwards. The hazard increment due to the LRF-DMF is quite small, even very close to the fault, and as expected its contribution to the hazard decreases away from the fault so that in Sidney at ~25 km distance it is insignificant. The importance would have been very different in a lower hazard region, or if the slip rate on the LRF-DMF had been considerably higher.

  • <div>Geoscience Australia, together with contributors from the wider Australian seismology community, have produced a new National Seismic Hazard Assessment (NSHA23), recommended for inclusion in proposed updates to Standards Australia’s&nbsp;AS1170.4. NSHA23 builds on the model framework developed for NSHA18, and incorporates scientific advances and stakeholder feedback received since development of that model. Key changes include: further refinement and homogenisation of the earthquake catalogue; revisions to the fault source model through inclusion of newly identified faults and revised activity rates on some faults; assessment of ground motion models through quantitative comparison against observations; and inclusion of a specific ground motion model for shaking from plate-boundary earthquakes in northern Australia. Expert elicitation was used to capture epistemic uncertainty surrounding model choices. The elicitation focused on decision points that sensitivity analysis had shown were more important for hazard, where new models had been developed, and where model choices had been controversial in NSHA18. Key questions included which catalogue to use as the basis for calculating hazard, the weighting of different source model classes (background, regional, seismotectonic, smoothed seismicity and smoothed seismicity with faults), and the selection and weighting of ground motion models for different tectonic regions. NSHA23 hazard results for capital cities show minor changes compared with NSHA18, with the exception of Darwin. Here the ground motion with a 10% probability of exceedance in 50 years increases significantly, a result that is attributed to inclusion of a new, more realistic ground motion model for plate-boundary earthquakes in this unique tectonic setting.</div><div><br>This paper was presented to the 2023 Australian Earthquake Engineering Conference 23-25 November 2023 (https://aees.org.au/aees-conference-2023/)</div>

  • Geoscience Australia has produced a draft National Seismic Hazard Assessment (NSHA18), together with contributions from the wider Australian seismology community. This paper provides an overview of the provisional peak ground acceleration (PGA) hazard values and discusses rationale for changes in the proposed design values at the 1/500-year annual exceedance probability (AEP) level relative to Standards Australia’s AS1170.4–2007 design maps. The NSHA18 update yields many important advances on its predecessors, including: consistent expression of earthquake magnitudes in moment magnitude; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model; inclusion of epistemic uncertainty on fault-slip-model magnitude-frequency distributions and earthquake clustering; and the use of modern ground-motion models through a weighted logic tree framework. In general, the 1/500-year AEP seismic hazard values across Australia have decreased relative to the earthquake hazard factors the AS1170.4–2007, in most localities significantly. The key reasons for the decrease in seismic hazard factors are due to: the reduction in the rates of moderate-to-large earthquakes through revision of earthquake magnitudes; the increase in b-values through the conversion of local magnitudes to moment magnitudes, particularly in eastern Australia, and; the use of modern ground-motion attenuation models. Whilst the seismic hazard is generally lower than in the present standard, we observe that the relative proportion of the Australian landmass exceeding given PGA thresholds is consistent with other national hazard models for stable continental regions.

  • In plate boundary regions moderate to large earthquakes are often sufficiently frequent that fundamental seismic parameters such as the recurrence intervals of large earthquakes and maximum credible earthquake (Mmax) can be estimated with some degree of confidence. The same is not true for the Stable Continental Regions (SCRs) of the world. Large earthquakes are so infrequent that the data distributions upon which recurrence and Mmax estimates are based are heavily skewed towards magnitudes below Mw5.0, and so require significant extrapolation up to magnitudes for which the most damaging ground-shaking might be expected. The rarity of validating evidence from surface rupturing palaeo-earthquakes typically limits the confidence with which these extrapolated statistical parameters may be applied. Herein we present a new earthquake catalogue containing, in addition to the historic record of seismicity, 150 palaeo-earthquakes derived from 60 palaeo-earthquake features spanning the last > 100 ka of the history of the Precambrian shield and fringing extended margin of southwest Western Australia. From this combined dataset we show that Mmax in non-extended-SCR is M7.25 ± 0.1 and in extended-SCR is M7.65 ± 0.1. We also demonstrate that in the 230,000 km2 area of non-extended-SCR crust, the rate of seismic activity required to build these scarps is one tenth of the contemporary seismicity in the area, consistent with episodic or clustered models describing SCR earthquake recurrence. A dominance in the landscape of earthquake scarps reflecting multiple events suggests that the largest earthquakes are likely to occur on pre-existing faults. We expect these results might apply to most areas of non-extended-SCR worldwide.