From 1 - 3 / 3
  • <div>Understanding the hydrocarbon potential of Australia’s sedimentary basins is critical to ensuring the nation’s future energy security. The Pedirka and western Eromanga basins have proven petroleum potential with a sub-commercial oil discovery at Poolowanna 1 in the Poolowanna Trough and several wells drilled over the Colson Shelf and Madigan Trough showing evidence for residual oil zones. However, these basins remain relatively underexplored with only 42 petroleum wells drilled and relatively sparse 2D seismic data coverage. Geoscience Australia’s AFER Project has undertaken a qualitative and quantitative play-based assessment of the Pedirka and western Eromanga basins to enable a better understanding of their undiscovered hydrocarbon resources.</div><div><br></div><div>The AFER Project’s assessments are underpinned by new geological insights into the western Eromanga Basin and a supporting upscaled 3D geological model. A play-based common risk segment (CRS) mapping approach has been applied to eleven play intervals to delineate basin areas with relatively high prospectivity based on five geological risk elements: reservoir presence, reservoir effectiveness, top seal, trap presence, and hydrocarbon charge. Results from this qualitative component of the assessment indicate that the highest potential for future hydrocarbon discoveries is likely to be conventional oil resources across the Poolowanna Trough, Colson Shelf and Madigan Trough. The most prospective exploration targets are the Namur-Murta, Poolowanna and Peera Peera play intervals on a geological probability of success basis. The Peera Peera and Poolowanna play intervals have proven hydrocarbon charge from the Poolowanna 1 oil discovery but show poor reservoir quality (porosity <10%) in wells drilled across the Poolowanna Trough. These play intervals likely represent tight conventional oil exploration targets across their main play fairways in the Poolowanna Trough. The Namur-Murta interval has high reservoir qualities across all potentially prospective areas but has lower certainty regarding hydrocarbon charge with the most significant exploration result to date being a residual oil zone in the Madigan Trough. Moderate to high prospectivity for conventional oil is interpreted to occur in the Adori-Westbourne, Birkhead and Hutton play intervals over the eastern flanks of the Poolowanna Trough and western flanks of the Birdsville Track Ridge. The Walkandi, Upper Purni, Lower Purni and Crown Point play intervals are assessed as having moderate prospectivity for conventional oil over the Eringa Trough, Madigan Trough and Colson Shelf. </div><div><br></div><div>A quantitative assessment of the ‘Yet to Find’ hydrocarbon volumes has been undertaken to provide a play-level indication of the possible undiscovered conventional oil volumes. The risked volumes include a ‘Base Case’ that reflects the current exploration understanding of the basins, and a ‘High Case’ that reflects the potential impact of a new working petroleum system being discovered in the basins. The mean risked recoverable oil volume for the Base Case scenario total 22.2 MMbbl for the four plays evaluated (Namur-Murta, Poolowanna, Peera Peera and Lower Purni). About 70% of the risked mean volumes occur in the Poolowanna and Namur-Murta play intervals. Results from the High Case model highlight the significantly greater YTF potential across the basins if the geological requirement for a new working petroleum system eventuates from further exploration, with a total mean risked volume of 234.8 MMbbl for the three play intervals evaluated (Namur-Murta, Poolowanna and Lower Purni). Risked volumes are relatively evenly distributed across the three play intervals. &nbsp;&nbsp;</div><div><br></div><div>Unconventional hydrocarbons are evaluated as being less prospective than conventional hydrocarbons in the western Eromanga basin. Shale oil plays have not previously been explored but may be present within organic-rich shales from the Poolowanna and Peera Peera play intervals. These shale oil plays are evaluated as being moderately prospectivity due to their thin and heterogeneous character. Coal seam gas (CSG) wells drilled into the Upper Purni and Lower Purni play intervals have to date only demonstrated the presence of gas-undersaturated coal seams over the Andado Shelf. However, CSG is the most likely hydrocarbon resource type to produce hydrocarbons from the Pedirka Basin if future exploration can identify sweet spots where different geological conditions occur that are conducive to preserving high gas saturations.&nbsp;</div><div><br></div>

  • <div>The Pedirka, Simpson and western Eromanga basins in central Australia have undergone a chequered exploration history which has seen a total of only 42 wells drilled across a study area of ~210,000km2. Exploration initially focused on conventional hydrocarbons from the 1950s-1980s, before shifting towards coal seam gas (CSG) opportunities in the mid-2000s. Active petroleum systems have been proven in the region by a non-commercial oil discovery at Poolowanna 1 in 1977, and by several wells that showed evidence of residual oil columns. CSG exploration wells have confirmed the presence of thick, marginally mature coal intervals on the flanks of the basins, but are yet to evaluate the deeper troughs.</div><div>Geoscience Australia, the Northern Territory Geological Survey and the South Australian Department for Energy and Mining have been collaborating on the Australia’s Future Energy Resources project under the Australian government funded Exploring for the Future Program to undertake an assessment of the resource potential for conventional and unconventional hydrocarbons, and the geological carbon and storage (GCS) potential of the greater Pedirka region. </div><div>The project applied a play-based exploration approach to qualitatively assess the resource potential of the region. The Carboniferous to Cretaceous stratigraphic interval was divided into 14 plays which were evaluated for the presence of sediment-hosted energy resources through post-drill analysis, gross depositional environment mapping and common risk segment mapping. The analysis identified energy resources and GCS potential across multiple plays and locations within the study area. These results demonstrate, that while the region is underexplored, it should not be overlooked by future exploration activities.</div> Published in The APPEA Journal 2023. <b>Citation:</b> Iwanec Jeremy, Strong Paul, Bernecker Tom (2023) Underexplored but not forgotten: assessing the energy resources potential of the greater Pedirka Basin region through play-based mapping. <i>The APPEA Journal</i><b> 63</b>, S251-S256. https://doi.org/10.1071/AJ22150

  • <div>Throughout geological history, marine organic-rich shales show variable but appreciable enrichment in uranium (U), < 5 to > 500 ppm. Here we report the results of high-energy resolution fluorescence detection (HERFD) x-ray absorption spectroscopy at U L3 and M4 edges to characterize U speciation in marine sediments.</div><div><br></div><div>We characterised U oxidation state in samples from the Cretaceous Toolebuc Formation of the Eromanga Basin, Australia. Nine samples were carbonaceous shales with high total organic carbon (TOC) content of 5.9 to 13.4 wt&nbsp;% and with low maturity organic matter. Two samples of coquinite were selected for comparison (TOC 0.3 and 2.4 wt %).</div><div><br></div><div>Our results suggest that a significant proportion of U in marine black shales (~20 to 30%) exists as U(VI) (Figures 1-2), despite the extremely reducing (anoxic to euxinic) conditions during sediment precipitation and diagenesis. Within individual samples, spot analyses indicate variation in the estimated oxidation state within a range of ~20% of U(VI). Uranium is unevenly distributed at mm to nanoscale. Nanoscale secondary ion mass spectrometry (NanoSIMS) reveals different associations that often coexist in single samples; nano-particulate uranium is associated with organic matter matrix or sulphide minerals, whereas phosphate minerals display diffuse uranium enrichment. The coquinite has a higher proportion of U(VI), consistent with the dysoxic depositional environment (Boreham and Powell, 1987).</div><div><br></div><div>The unexpectedly enhanced proportion of U(VI) relative to U(IV) within marine organic-rich shales implies that U might not be immediately fixed by reduction processes during sedimentation, but adsorbed by accumulating organic matter, at least in part as U(VI). This is consistent with the behaviour of uranium reported within the water column of the anoxic Black Sea (Anderson, 1989), experiments on U(VI) sorption by organic matter (e.g., Bhat et al., 2008), and previously documented redox state of U from continental organic-rich Eocene (56-34 Ma) sediments of paleochannel and lacustrine origin (Cumberland et al., 2018).</div><div><br></div><div>The results are significant for improving hydrocarbon exploration in known fields (covering the gap to a carbon-free economy without development of new greenfield oil provinces); economic geology (uranium, base-metal, and critical-metal deposits); and environmental management (evaluating potential mobilization of U by groundwaters).</div><div><br></div>This Abstract was submitted and presented to the 2023 Goldschmidt Conference Lyon, France (https://conf.goldschmidt.info/goldschmidt/2023/meetingapp.cgi)