From 1 - 10 / 26
  • Extended abstract version of the abstract (Geocat#73747) submitted in March 2012 and accepted for an oral presentation at the symposium.

  • The Early Cretaceous South Perth Shale has been previously identified as the regional seal in the offshore Vlaming Sub-basin. The South Perth Shale is a deltaic succession, which unfilled a large palaeotopographic low in the Early Cretaceous through a series of transgressive and regressive events. The new study undertaken at Geoscience Australia has shown that the seal quality varies greatly throughout the basin and at places has very poor sealing properties. A re-evaluation of the regional seal based on seismic mapping determined the extent of the pro-delta shale facies within the South Perth Shale succession, which are shown to provide effective sealing capacity. New sequence stratigraphic interpretation, seismic facies mapping, new and revised biostratigraphic data and well log analysis were used to produce palaeogeographic reconstructions which document the distribution of depositional facies within the South Perth Shale Formation and reveal evolution of the Early Cretaceous deltas. Our study documents spatial variations in the seal quality and re-defines the extent and thickness of the regional seal in the central Vlaming Sub-basin. It provides an explanation for the lack of exploration success at some structural closures and constraints for possible location of the valid plays.

  • Australia's southern continental margin hosts rich oil and gas resources and offers huge potential for future discoveries. Most of Australia's oil has been produced from the Gippsland Basin, located in the easternmost part of the southern rift system. With all the petroleum system elements and processes in place, the basin contains Australia's only billion barrel oil fields. These giant accumulations are sourced from rich liquid-prone coaly and carbonaceous source rocks. In contrast, the western two-thirds of the southern margin is occupied by one of the largest frontier provinces in Australia - the Bight Basin. The thick sedimentary succession in the Bight Basin (>15 km) and its evolution from local half-graben depocentres during the Jurassic, to an extensive sag basin in the Early Cretaceous and passive margin during the Late Cretaceous to Holocene, suggests that there is significant potential for the presence of multiple petroleum systems across the basin. The Ceduna Sub-basin in the eastern Bight Basin is currently the focus of renewed exploration efforts. The key to its petroleum prospectivity is the distribution of Upper Cretaceous marine and deltaic facies. Dredging of upper Cenomanian-Turonian organic-rich marine rocks has confirmed the presence of high quality potential source rocks in this section. These rocks are mature in the central part of the Ceduna Sub-basin and are likely to have generated and expelled hydrocarbons since the Campanian. Excellent reservoir rocks and potential intraformational seals are present in the Upper Cretaceous deltaic successions, and regional seals could be provided by Upper Cretaceous marine shales.

  • The 2012 Australian offshore acreage release includes exploration areas in four southern margin basins. Three large Release Areas in the frontier Ceduna Sub-basin lie adjacent to four exploration permits granted in 2011. The petroleum prospectivity of the Ceduna Sub-basin is controlled by the distribution of Upper Cretaceous marine and deltaic facies and a structural framework established by Cenomanian growth faulting. These Release Areas offer a range of plays charged by Cretaceous marine and coaly source rocks and Jurassic lacustrine sediments. In the westernmost part of the gas-producing Otway Basin, a large Release Area offers numerous opportunites to test exisiting and new play concepts in underexplored areas beyond the continental shelf. Gas and oil shows in the eastern part of the Release Area confirm the presence of at least two working petroleum systems. In the eastern Otway Basin, several Release Areas are offered in shallow water on the eastern flank of the highly prospective Shipwreck Trough and provide untested targets along the eastern basin margin southward into Tasmanian waters. To the south, a large Release Area in the frontier Sorell Basin provides the opportunity to explore a range of untested targets in depocentres that formed along the western Tasmanian transform continental margin. This year, two Release Areas offer exploration potential in the under-explored eastern deep-water part of the Gippsland Basin. Geological control is provided by several successful wells indicating the presence of both gas and liquids in the northern area, while the southern area represents the remaining frontier of the basin.

  • Full paper version of the short abstract (GEOCAT# 73702) previously submitted and accepted by conference organisers

  • The 2012 Australian offshore acreage release includes exploration areas in four southern margin basins. Three large Release Areas in the frontier Ceduna Sub-basin lie adjacent to four exploration permits granted in 2011. The petroleum prospectivity of the Ceduna Sub-basin is controlled by the distribution of Upper Cretaceous marine and deltaic facies and a structural framework established by Cenomanian growth faulting. These Release Areas offer a range of plays charged by Cretaceous marine and coaly source rocks and Jurassic lacustrine sediments. In the westernmost part of the gas-producing Otway Basin, a large Release Area offers numerous opportunities to test existing and new play concepts in underexplored areas beyond the continental shelf. Gas and oil shows in the eastern part of the Release Area confirm the presence of at least two working petroleum systems. In the eastern Otway Basin, several Release Areas are offered in shallow water on the eastern flank of the highly prospective Shipwreck Trough and provide untested targets along the eastern basin margin southward into Tasmanian waters. To the south, a large Release Area in the frontier Sorell Basin provides the opportunity to explore a range of untested targets in depocentres that formed along the western Tasmanian transform continental margin. Two Release Areas offer exploration potential in the under-explored eastern deepwater part of the Gippsland Basin. Geological control is provided by several successful wells indicating the presence of both gas and liquids in the northern area, while the southern area represents the remaining frontier of the basin.

  • Geoscience Australia has recently completed a marine survey in the offshore northern Perth Basin, off Western Australia (Jones et al., 2011b; Jones, 2011c, Upton and Jones, 2011). One of the principal aims of the survey was the collection of evidence for natural hydrocarbon seepage. The survey formed part of a regional reassessment of the basin's petroleum prospectivity in support of frontier exploration acreage Release Area W11-18. This reassessment was initiated under the Australian Government's Offshore Energy Security Program and formed part of Geoscience Australia's continuing efforts to identify a new offshore petroleum province. The offshore northern Perth Basin was identified as a basin with new frontier opportunities. New data demonstrated that proven onshore-nearshore petroleum system is also effective and widespread in the offshore (Jones et al., 2011a). Evidence for a Jurassic petroleum system was also demonstrated in the Release Area W11-18 (Jones et al., 2011a). The marine survey results provide additional support for the presence of an active petroleum system in the northern Perth Basin.

  • Oil and gas discoveries in Australia's offshore basins are concentrated on the North West Shelf (Northern Carnarvon, Browse and Bonaparte basins) and Bass Strait (Gippsland, Otway and Bass basins). While discoveries have been made in a few regions outside these areas (e.g. Perth Basin), a large proportion of Australia's offshore basins remain exploration frontiers. However, the decline in oil production from the North West Shelf and Bass Strait basins since 2000 has led to an increasing exploration interest in the frontier basins. In order to improve our knowledge of the offshore frontiers and encourage exploration to these areas, from 2003-2011, Geoscience Australia was funded by the Australian Government to undertake a series of pre-competitive data acquisition and analyses programs in frontier basins around the Australian margin. This Record presents a comprehensive inventory of the geology, petroleum systems, exploration status and data coverage for 35 frontier basins, sub-basins and provinces, that draws on the results of those pre-competitive data programs, as well as exploration results and the geoscience literature. The Record also provides an assessment of the critical science and exploration questions and issues for each area. The results of each basin assessment are summarised in a prospectivity ranking. The availability of data and level of knowledge in each area is reflected in a confidence rating for that ranking. While the prospectivity of some areas is widely acknowledged to be high (e.g. Ceduna Sub-basin), the perception of prospectivity in many basins is negatively affected by the amount or quality of data available; in these basins, the acquisition of new data or targeted research could make a significant difference to the understanding of petroleum potential and likelihood of success. Therefore, recommendations for future work that could assist in addressing key knowledge or data gaps are included in each basin assessment.

  • Presentation delivered on 8 March 2012 at the Tasman Frontier Petroleum Industry Workshop, Geoscience Australia, Canberra.

  • <p>This data package includes raw (Level 0) and reprocessed (Level 1) HyLogging data from 25 wells in the Georgina Basin, onshore Australia. This work was commissioned by Geoscience Australia, and includes an accompanying meta-data report that documents the data processing steps undertaken and a description of the various filters (scalars) used in the processed datasets. <p>Please note: Data can be made available on request to ClientServices@ga.gov.au