From 1 - 10 / 32
  • The 20 May 2016 MW 6.1 Petermann earthquake in central Australia generated a 21 km surface rupture with 0.1 to 1 m vertical displacements across a low-relief landscape. No paleo-scarps or potentially analogous topographic features are evident in pre-earthquake Worldview-1 and Worldview-2 satellite data. Two excavations across the surface rupture expose near-surface fault geometry and mixed aeolian-sheetwash sediment faulted only in the 2016 earthquake. A 10.6 ± 0.4 ka optically stimulated luminescence (OSL) age of sheetwash sediment provides a minimum estimate for the period of quiescence prior to 2016 rupture. Seven cosmogenic beryllium-10 (10Be) bedrock erosion rates are derived for samples < 5 km distance from the surface rupture on the hanging-wall and foot-wall, and three from samples 19 to 50 km from the surface rupture. No distinction is found between fault proximal rates (1.3 ± 0.1 to 2.6 ± 0.2 m Myr−1) and distal samples (1.4 ± 0.1 to 2.3 ± 0.2 m Myr−1). The thickness of rock fragments (2–5 cm) coseismically displaced in the Petermann earthquake perturbs the steady-state bedrock erosion rate by only 1 to 3%, less than the erosion rate uncertainty estimated for each sample (7–12%). Using 10Be erosion rates and scarp height measurements we estimate approximately 0.5 to 1 Myr of differential erosion is required to return to pre-earthquake topography. By inference any pre-2016 fault-related topography likely required a similar time for removal. We conclude that the Petermann earthquake was the first on this fault in the last ca. 0.5–1 Myr. Extrapolating single nuclide erosion rates across this timescale introduces large uncertainties, and we cannot resolve whether 2016 represents the first ever surface rupture on this fault, or a > 1 Myr interseismic period. Either option reinforces the importance of including distributed earthquake sources in fault displacement and seismic hazard analyses. <b>Citation: </b>King, T. R., Quigley, M., Clark, D., Zondervan, A., May, J.-H., & Alimanovic, A. (2021). Paleoseismology of the 2016 M-W 6.1 Petermann earthquake source: Implications for intraplate earthquake behaviour and the geomorphic longevity of bedrock fault scarps in a low strain-rate cratonic region. <i>Earth Surface Processes and Landforms</i>, 46(7), 1238–1256.

  • This ecat record refers to the data described in ecat record 123048. The data, supplied in shapefile format, is an input to the 2018 National Seismic Hazard Assessment for Australia (NSHA18) product (ecat 123020) and the 2018 Probabilistic Tsunami Hazard Assessment for Australia (PTHA18) product (ecat 122789).

  • Sites recording the extinction or extirpation of tropical–subtropical and cool–cold temperate rainforest genera during the Plio–Pleistocene aridification of Australia are scattered across the continent, with most preserving only partial records from either the Pliocene or Pleistocene. The highland Lake George basin is unique in accumulating sediment over c. 4 Ma although interpretation of the plant microfossil record is complicated by its size (950 km2), neotectonic activity and fluctuating water levels. A comparison of this and other sites confirms (1) the extinction of rainforest at Lake George was part of the retreat of Nothofagus-gymnosperm communities across Australia during the Plio–Pleistocene; (2) communities of warm- and cool-adapted rainforest genera growing under moderately warm-wet conditions in the Late Pliocene to Early Pleistocene have no modern analogues; (3) the final extirpation of rainforest taxa at Lake George occurred during the Middle Pleistocene; and (4) the role of local wildfires is unresolved although topography, and, elsewhere, possibly edaphic factors allowed temperate rainforest genera to persist long after these taxa became extinct or extirpated at low elevations across much of eastern Australia. Araucaria, which is now restricted to the subtropics–tropics in Australia, appears to have survived into Middle Pleistocene time at Lake George, although the reason remains unclear. <b>Citation:</b> Macphail Mike, Pillans Brad, Hope Geoff, Clark Dan (2020) Extirpations and extinctions: a plant microfossil-based history of the demise of rainforest and wet sclerophyll communities in the Lake George basin, Southern Tablelands of NSW, south-east Australia. <i>Australian Journal of Botany </i>68, 208-228.

  • The 6th Generation seismic hazard model of Canada is being developed to generate seismic design values for the 2020 National Building Code of Canada (NBCC2020). Ground-motion models (GMMs) from the Next Generation Attenuation (NGA)-West 2 and NGA-East programs are used and epistemic uncertainty in ground-motion models is captured through the use of a classical weighted logic tree framework. For the first time, seismic hazard is computed directly on primary (e.g. A-E) seismic site classes from their time-averaged shear wave velocities in the upper 30 m of the crust (VS30). This approach simplifies the way end users will determine seismic design values for a given location and site class, while having other technical advantages such as capturing epistemic uncertainty in site amplification models. It will remove the need for separate site amplification look-up tables in the building code, enabling users to simply supply their location and site class to determine seismic design values. In general, the new ground- motion models predict higher hazard in most Canadian localities due to a variable combination of changes in median ground motions, site amplification and aleatory uncertainty.

  • This Geoscience Australia Record contains technical data and input files that, when used with the Global Earthquake Model’s (GEM’s) OpenQuake-engine probabilistic seismic hazard analysis software (Pagani et al., 2014), will enable end users to explore and reproduce the 2018 National Seismic Hazard Assessment (NSHA18) of Australia (Allen et al., 2018a). This report describes the NSHA18 input data only and does not discuss the scientific rationale behind the model development. These details are provided in Allen et al. (2018a) and references therein.

  • Seismic hazard assessments in stable continental regions such as Australia face considerable challenges compared with active tectonic regions. Long earthquake recurrence intervals relative to historical records make forecasting the magnitude, rates and locations of future earthquakes difficult. Similarly, there are few recordings of strong ground motions from moderate-to-large earthquakes to inform development and selection of appropriate ground motion models (GMMs). Through thorough treatment of these epistemic uncertainties, combined with major improvements to the earthquake catalog, a National Seismic Hazard Assessment (NSHA18) of Australia has been undertaken. The resulting hazard levels at the 10% in 50-year probability of exceedance level are in general significantly lower than previous assessments, including hazard factors used in the Australian earthquake loading standard (AS1170.4–2007 [R2018]), demonstrating our evolving understanding of seismic hazard in Australia. The key reasons for the decrease in seismic hazard factors are adjustments to catalog magnitudes for earthquakes in the early instrumental period, and the use of modern ground-motion attenuation models. This article summarizes the development of the NSHA18, explores uncertainties associated with the hazard model, and identifies the dominant factors driving the resulting changes in hazard compared with previous assessments.

  • In plate boundary regions moderate to large earthquakes are often sufficiently frequent that fundamental seismic parameters such as the recurrence intervals of large earthquakes and maximum credible earthquake (Mmax) can be estimated with some degree of confidence. The same is not true for the Stable Continental Regions (SCRs) of the world. Large earthquakes are so infrequent that the data distributions upon which recurrence and Mmax estimates are based are heavily skewed towards magnitudes below Mw5.0, and so require significant extrapolation up to magnitudes for which the most damaging ground-shaking might be expected. The rarity of validating evidence from surface rupturing palaeo-earthquakes typically limits the confidence with which these extrapolated statistical parameters may be applied. Herein we present a new earthquake catalogue containing, in addition to the historic record of seismicity, 150 palaeo-earthquakes derived from 60 palaeo-earthquake features spanning the last > 100 ka of the history of the Precambrian shield and fringing extended margin of southwest Western Australia. From this combined dataset we show that Mmax in non-extended-SCR is M7.25 ± 0.1 and in extended-SCR is M7.65 ± 0.1. We also demonstrate that in the 230,000 km2 area of non-extended-SCR crust, the rate of seismic activity required to build these scarps is one tenth of the contemporary seismicity in the area, consistent with episodic or clustered models describing SCR earthquake recurrence. A dominance in the landscape of earthquake scarps reflecting multiple events suggests that the largest earthquakes are likely to occur on pre-existing faults. We expect these results might apply to most areas of non-extended-SCR worldwide.

  • The geological structure of southwest Australia comprises a rich, complex record of Precambrian cratonization and Phanerozoic continental breakup. Despite the stable continental cratonic geologic history, over the past five decades the southwest of Western Australia has been the most seismically active region in continental Australia though the reason for this activity is not yet well understood. The Southwest Australia Seismic Network (SWAN) is a temporary broadband network of 27 stations that was designed to both record local earthquakes for seismic hazard applications and provide the opportunity to dramatically improve the rendering of 3-D seismic structure in the crust and mantle lithosphere. Such seismic data are essential for better characterization of the location, depth and attenuation of the regional earthquakes, and hence understanding of earthquake hazard. During the deployment of these 27 broadband instruments, a significant earthquake swarm occurred that included three earthquakes with local magnitude (MLa) ≥ 4.0, and the network was supplemented by an additional six short-term nodal seismometers at 10 separate sites in early 2022, as a rapid deployment to monitor this swarm activity. The SWAN experiment has been continuously recording since late 2020 and will continue into 2023. These data are archived at the FDSN recognized Australian Passive Seismic (AusPass) Data center under network code 2P and will be publicly available in 2025. <b>Citation:</b> Meghan S. Miller, Robert Pickle, Ruth Murdie, Huaiyu Yuan, Trevor I. Allen, Klaus Gessner, Brain L. N. Kennett, Justin Whitney; Southwest Australia Seismic Network (SWAN): Recording Earthquakes in Australia’s Most Active Seismic Zone. <i>Seismological Research Letters </i><b>2023</b>;; 94 (2A): 999–1011. doi: https://doi.org/10.1785/0220220323

  • Modern geodetic and seismic monitoring tools are enabling study of moderate-sized earthquake sequences in unprecedented detail. Here we use a variety of methods to examine surface deformation caused by a sequence of earthquakes near Lake Muir in Southwest Western Australia in late 2018. A shallow MW 5.3 earthquake near Lake Muir on the 16th of September 2018 was followed on the 8th of November by a MW 5.2 event in the same region. Focal mechanisms produced for the events suggest reverse and strike slip rupture, respectively. Recent improvements in the coverage and observation frequency of the Sentinel-1 Synthetic Aperture Radar (SAR) satellite in Australia allowed for the timely mapping of the surface deformation field relating to both earthquakes in unprecedented detail. Interferometric Synthetic Aperture Radar (InSAR) analysis of the events suggest that the ruptures are in part spatially coincident. Field mapping, guided by the InSAR results, revealed that the first event produced an approximately 3 km long and up to 0.5 m high west-facing surface rupture, consistent with slip on a moderately east-dipping fault. Double difference hypocentre relocation of aftershocks using data from rapidly deployed seismic instrumentation confirms an easterly dipping rupture plane for the first event. The aftershocks are predominantly located at the northern end of the rupture where the InSAR suggests vertical displacement was greatest. The November event resulted from rupture on a NE-trending strike slip fault. Anecdotal evidence from local residents suggests that the southern part of the September rupture was ‘freshened’ during the November event, consistent with InSAR results, which indicate that a NW-SE trending structural element accommodated deformation during both events. Comparison of the InSAR-derived deformation field with surface mapping and UAV-derived digital terrain models (corrected to pre-event LiDAR) revealed a surface deformation envelope consistent with the InSAR for the first event, but could not discern deformation unique to the second event.

  • People in Australia are surprised to learn that hundreds of earthquakes occur below our feet every year. The majority are too small to feel, let alone cause any damage. Despite this, we are not immune to large earthquakes.