Structural Geology
Type of resources
Keywords
Publication year
Topics
-
There has been a long-identified need in New Zealand for a community-developed three-dimensional model of active faults that is accessible and available to all. Over the past year, work has progressed on building and parameterising such a model – the New Zealand Community Fault Model (NZ CFM). The NZ CFM will serve as a unified and foundational resource for many societally important applications such as the National Seismic Hazard Model, Resilience to Natures Challenges Earthquake and Tsunami programme, physics-based fault systems modelling, earthquake ground-motion simulations, and tsunami hazard evaluation. Version 1.0 of the NZ CFM is nearing finalisation and release. NZ CFM v1.0 provides a simplified 3D representation of New Zealand’s crustal-scale active faults (including some selected potentially active faults) compiled at a nominal scale of 1:500,000 to 1:1,000,000. NZ CFM faults are defined based on surface traces, seismicity, seismic reflection profiles, wells, and geologic cross sections. The model presently incorporates more than 800 objects (i.e., faults), which include triangulated surface representations of those faults and associated parameters such as dip and dip direction, seismogenic rupture depth, sense of movement, slip direction, and net slip rate. Presented at the 2021 New Zealand Society for Earthquake Engineering (NZSEE) Conference (https://www.nzsee.org.nz/event/2021-nzsee-conference/)
-
Carbon capture and storage (CCS) is one promising technology available to help mitigate elevated CO2 concentrations in the atmosphere (Cook, 2012). While CCS is currently being implemented on a large scale at a number of locations worldwide (e.g. Bickle et al., 2007; Orr, 2009; Rutqvist et al., 2010), there are some important geological factors that remain poorly understood, requiring further scientific examination to ensure that projects are able to proceed with minimal risk. One of the key factors that is difficult to predict is the behaviour of fault zones with respect to CO2 migration. Unwanted migration of CO2 through a fault zone or a network of faults is obviously undesirable as it would facilitate transport of CO2 toward the surface, possibly contaminating shallow resources in the process. While the vertical transmissibility of any one fault is difficult to predict, it is possible to determine whether fault networks are connected in 3 dimensions using novel seismic techniques. Results of such an analysis would provide important information on the likely pathways or continuity of the pathways that might exist for CO2 migration. In this paper, we present a workflow for determining fault connectivity in cap rock sequences possessing highly complex polygonal fault networks, using an example from the Bonaparte Basin in offshore northwest Australia.
-
Polygonal fault systems evolve as part of dewatering and compaction process of hemi-pelagic sediments Polygonal fault frequency and connectivity increases with depth Polygonal faults are potential high permeability conduits through sealing formations Further multidisciplinary site specific analysis is required to test seal characteristics of Bathurst Island Group
-
During 2021–2024 Geoscience Australia conducted regional seismic mapping across the offshore Otway Basin that extended into the frontier deep-water region. This work was part of a broader pre-competitive study undertaken in support of petroleum exploration. Seismic horizons and faults were interpreted on three regional data sets, including: over 18 000 line-km of new and reprocessed data compiled for the 2020 offshore Otway Basin seismic program; over 40 000 line-km of legacy 2D seismic data; and the Otway 3D Megamerge dataset. This digital dataset (publication date 9 September 2024) updates and replaces a previously released dataset (publication date 16 May 2022). This updated dataset includes 8 surface grids and 11 isochron grids generated from the following seismic horizons (in ascending stratigraphic order); MOHO (Mohorovičić discontinuity), TLLCC (top laminated lower continental crust), Base (base Crayfish Supersequence), EC2 (base Eumeralla Supersequence), LC1 (base Shipwreck Supersequence), LC1.2 (base LC1.2 Sequence), LC2 (base Sherbrook Supersequence), and T1 (base Wangerrip Supersequence). Fault polygons created for all surfaces (except for MOHO, TLLCC, and LC1.2) are also included in the dataset. Maps generated from the dataset depict deep-water Cretaceous depocentres, and trends in crustal thinning and rifting during the Cretaceous. This revised dataset has underpinned updates to regional structural elements, including a revision of the boundary between the Otway and Sorell basins.
-
First pass geomechanical assessment of the Darling Basin using relevant data from Tiltagoonah-1 and Mena Murtee-1 wells What are the expected fracture gradients in the Darling Basin (ie. what are the maximum injection pressures that can be sustained)? What faults are at greatest risk of reactivating? What is the stress regime and how will fracture networks evolve if they form? What is the horizontal compression direction for the Darling Basin?
-
Mapped and projected extents of geology and geologic features in Australia, including: surface geology, regolith geology, solid geology, chronostratigraphic surfaces, and province boundaries. The database includes igneous, sedimentary and structural characteristics, age limits, parent and constituent units, relations to surrounding provinces, and mineral and petroleum resources. based on field observations interpretations of geophysics and borehole data. <b>Value:</b> Data used for understanding surface and near surface geology. The data can be used for a variety of purposes, including resource exploration, land use management, and environmental assessment. <b>Scope:</b> Australia and Australian Antarctic Territory
-
The AusAEM1 airborne electromagnetic survey extends across an area exceeding 1.1 million km2 over Queensland and the Northern Territory. Approximately 60,000 line kilometres of data were acquired at a nominal line spacing of 20 km (Ley-Cooper et al., 2020). To improve targeting and outcomes for mineral, energy and groundwater exploration, we conducted a regional interpretation of this dataset to characterise the subsurface geology of northern Australia. The interpretation includes the depth to chronostratigraphic surfaces, compilation of stratigraphic relationship information, and delineation of structural and electrically conductive features. In addition to help connecting correlative outcropping units separated by up to hundreds of kilometres, the results led to 3D mapping of palaeovalleys and prompted further investigation of electrical conductors and their relationship to structural features and mineralisation. Approximately 200,000 regional depth point measurements, each attributed with detailed geological information, are an important step towards a national geological framework, and offer a regional context for more detailed, smaller-scale AEM surveys. Refer to Wong et al., (2020) for more details on the AusAEM1 interpretation.
-
The AusAEM1 survey is the world’s largest airborne electromagnetic survey flown to date, extending across an area exceeding 1.1 million km2 over Queensland and the Northern Territory. Approximately 60 000 line kilometres of data were acquired at a nominal line spacing of 20 km. Using this dataset, we interpreted the depth to chronostratigraphic surfaces, assembled stratigraphic relationship information, and delineated structural and electrically conductive features. Our results improved understanding of upper-crustal geology, led to 3D mapping of palaeovalleys, prompted further investigation of electrical conductors and their relationship to structural features and mineralisation, and helped us continuously connect correlative outcropping units separated by up to hundreds of kilometres. Our interpretation is designed to improve targeting and outcomes for mineral, energy and groundwater exploration, and contributes to our understanding of the chronostratigraphic, structural and upper-crustal evolution of northern Australia. More than 150 000 regional depth measurements, each attributed with detailed geological information, are an important step towards a national geological framework, and offer a regional context for more detailed, smaller-scale AEM surveys. <b>Citation:</b> Wong, S.C.T., Roach, I.C., Nicoll, M.G., English, P.M., Bonnardot, M.-A., Brodie, R.C., Rollet, N. and Ley-Cooper, A.Y., 2020. Interpretation of the AusAEM1: insights from the world’s largest airborne electromagnetic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
Understanding disaster risk enables Government, industry and the community to make better decisions on how to prepare for disasters and improve the resilience of communities. Geoscience Australia develops and provides fundamental data and information to understand disaster risk so that we can determine how hazards impact the things that are valuable to us. Through robust and proven methodologies, technical expertise and trusted data, our national capability can support informed decisions to prepare for and respond to hazard events so that the impact of disasters can be reduced, and to inform where and how our future communities and supporting infrastructure are built.
-
Geoscience Australia has undertaken a regional seismic mapping study that extends into the frontier deep-water region of the offshore Otway Basin. This work builds on seismic mapping and petroleum systems modelling published in the 2021 Otway Basin Regional Study. Seismic interpretation spans over 18 000 line-km of new and reprocessed data collected in the 2020 Otway Basin seismic program and over 40 000 line-km of legacy 2D seismic data. Fault mapping has resulted in refinement and reinterpretation of regional structural elements, particularly in the deep-water areas. Structure surfaces and isochron maps highlight Shipwreck (Turonian–Santonian) and Sherbrook (Campanian–Maastrichtian) supersequence depocentres across the deep-water part of the basin. These observations will inform the characterisation of petroleum systems within the Upper Cretaceous succession, especially in the underexplored deep-water region. Presented at the 2022 Australian Petroleum Production & Exploration Association (APPEA)