From 1 - 10 / 68
  • The hydrocarbon generative potential and the thermal maturity of source rocks in the offshore northern Perth Basin was reassessed based on existing and new geochemical data to get a better understanding of the basin's prospectivity. The study establishes for the first time that the main source of onshore accumulations, the Late Permian-Early Triassic Hovea Member, is well developed offshore and contains organic-rich sediments of oil-prone character. This finding shatters the long-held view that the Hovea Member was either absent or of poor quality offshore and provides a new perspective on the basin's prospectivity. The source potential of the Hovea Member varies spatially with best source rocks observed in the Beagle Ridge and Central Abrolhos Sub-basin. The Late Permian Irwin River Sequence and several Jurassic Sequences are also identified as prime potential source rocks offshore, mostly for their gas-generative potential. Oil-generative potential was identified in the Middle to Late Jurassic Yarragadee Sequence and possibly in the Middle Jurassic Cadda Sequence.

  • Geoscience Australia and its predecessors have analysed the hydrochemistry of water sampled from bores, surface features, rainwater and core samples (pore water). Samples have been collected during drilling or monitoring projects, including Exploring for the Future (EFTF). The hydrochemistry database includes physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, isotopes and nutrients. The resource is accessible via the Geoscience Australia Portal <a href="https://portal.ga.gov.au/">(https://portal.ga.gov.au/)</a>

  • <div>The Birrindudu Basin is a region of focus for the second phase of the Geoscience Australia’s Exploring for the Future (EFTF) program (2020–2024). The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. Interpretation of industry seismic data indicates it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Furthermore, much of the age of the stratigraphy of the Birrindudu Basin, particularly the younger stratigraphic units, and regional correlations to the greater McArthur Basin remains provisional and speculative.&nbsp;</div><div><br></div><div>This report presents data from Rock-Eval pyrolysis analyses undertaken by Geoscience Australia on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity from 178 drill core samples from six drill holes intersecting units of the Birrindudu Basin including: 99VRNTGSDD1, 99VRNTGSDD2, WLMB001B, LBD2, LMDH4, and ANT003. </div><div><br></div>

  • <div>NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Georgina Basin carbonates.&nbsp;</div><div>Geoscience Australia has undertaken a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara 1 as well as undertaking a range of analyses of about 500 physical samples recovered through the entire core. Analyses included geochronology, isotope studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity and petroleum systems investigations.</div><div>Rock-Eval pyrolysis raw data undertaken by Geoscience Australia were reported in Butcher et al. (2021) on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity. Interpretation of the Rock-Eval pyrolysis data concluded that a large portion of rocks within the Proterozoic section displayed unreliable Tmax values due to poorly defined S2 peaks resulting from high thermal maturity and low hydrogen content. In order to obtain more reliable Tmax values, Rock-Eval pyrolysis of selected isolated kerogens, where organic matter is concentrated and mineral matrix effects are removed, were conducted and the resulting data are presented in this report.&nbsp;</div><div><br></div>

  • The Browse Basin, located offshore on Australia's North West Shelf, contains major natural gas accumulations, some of which present high abundances of helium. The basin also contains large quantities of CO2 with some wells containing up to ~18 mol% CO2. Currently there is no information as to the origins of He and CO2 within the Browse Basin, despite this providing important information to the evolution of the natural gas. By understanding where components of the gas originate, it is possible to make predictions about areas that may be high in CO2, which would be problematic for production; conversely areas rich in He could present a second revenue stream from the same well.

  • <div>The pyrolysis-reflectance tie database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases, which combine key properties related to thermal maturity. These data are typically used as input parameters in basin analysis and petroleum systems modelling to assist with the discovery and evaluation of sediment-hosted energy resources. The programmed pyrolysis analyses and the maceral reflectance analyses undertaken using reflected light microscopy are conducted on rock samples, either as cores, cuttings or rock chips, taken from boreholes and field sites in Australian sedimentary basins. The full datasets are available in the pyrolysis, vitrinite reflectance, maceral reflectance and organoclast maturity web services. These analyses are performed by various laboratories in service and exploration companies, Australian government institutions and universities using a range of instruments.</div><div><br></div><div>These data are collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The data are delivered in the Combined Pyrolysis and Vitrinite Reflectance web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • <div>The bulk source rock database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the bulk properties of sedimentary rocks that contain organic matter and fluid inclusions taken from boreholes and field sites. The analyses are performed by various laboratories in service and exploration companies, Australian government institutions, and universities, using a range of instruments. Sedimentary rocks that contain organic matter are typically referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. Data includes the borehole or field site location, sample depth, stratigraphy, analytical methods, other relevant metadata, and various data types including; elemental composition, and the stable isotopes of carbon, hydrogen, nitrogen, and sulfur. Results are also included from methods that separate the extractable organic matter (EOM) from rocks into bulk components, such as the quantification of saturated hydrocarbon, aromatic hydrocarbon, resin and asphaltene (SARA) fractions according to their polarity. The stable carbon (<sup>13</sup>C/<sup>12</sup>C) and hydrogen (<sup>2</sup>H/<sup>1</sup>H) isotopic ratios of the EOM and derivative hydrocarbon fractions, as well as fluid inclusion oils, are presented in delta notation (i.e., &delta;<sup>13</sup>C and &delta;<sup>2</sup>H) in parts per mil (‰) relative to the Vienna Peedee Belemnite (VPDB) standard.</div><div><br></div><div>These data are used to determine the molecular and isotopic compositions of organic matter within rocks and associated fluid inclusions and evaluate the potential for hydrocarbon generation in a basin. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The bulk data for sedimentary rocks are delivered in the Source Rock Bulk Properties and Stable Isotopes web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1750 m provide samples of the highest quality for a comprehensive geochemical program designed to inform on the energy and mineral prospectivity of the Carrara Sub-basin. Total Organic Carbon (TOC) contents from Rock-Eval pyrolysis of the Cambrian and Proterozoic sections demonstrate the potential for several thick black shales as source rocks and unconventional plays. Evidence for retained hydrocarbons included bituminous oil stains in centimetre-scale vugs within the Cambrian Georgina Basin and several oil bleeds within the Proterozoic section. The latter also contains surface gas with up to 2% methane concentrations measured within carbonaceous mudstones. Geochemical analyses of hydrocarbon shows highlight the occurrence of several petroleum systems operating in this frontier region. The results at NDI Carrara 1 offer the promise of a new exciting resource province in northern Australia.

  • <p>The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the North West Margin Energy Studies Section (NWMES). This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. <p>The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018) and Dorado 1 (2018) in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata. The current study aims to better understand this new petroleum system and establish its extent. <p>As part of this program, TOC and Rock-Eval pyrolysis analyses were undertaken by Geoscience Australia on selected rock samples from the well Roc 2 to establish their hydrocarbon-generating potential and thermal maturity.

  • <div>The Petroleum Systems Summary database stores the compilation of the current understanding of petroleum systems information by basin across Australia. The Petroleum Systems Summary database and delivery tool provide high-level information of the current understanding of key petroleum systems for areas of interest. For example, geological studies in the Exploring for the Future (EFTF) program have included the Canning, McArthur and South Nicholson basins (Carr et al., 2016; Hashimoto et al., 2018). The database and tool aim to assist geological studies by summarising and interpreting key datasets related to conventional and unconventional hydrocarbon exploration. Each petroleum systems summary includes a synopsis of the basin and key figures detailing the basin outline, major structural components, data availability, petroleum systems events chart and stratigraphy, and a précis of the key elements of source, reservoir and seal. Standardisation of petroleum systems nomenclature establishes a framework for each basin after Bradshaw (1993) and Bradshaw et al. (1994), with the source-reservoir naming conventions adopted from Magoon and Dow (1994).&nbsp;</div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal&nbsp;(https://portal.ga.gov.au/) via the Petroleum Systems Summary Tool (Edwards et al., 2020).</div>