From 1 - 10 / 20
  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This package contains data generated in the field as part of stratigraphic drilling operations in the Delamerian region of the western New South Wales during 2023 funded through the Exploring for the Future program. A range of geological, geophysical and geochemical data are included, as well as associated borehole information such as core photographs. The data can be viewed and downloaded via the Geoscience Australia Portal - https://portal.ga.gov.au/. The data that is available is from several databases which are associated to this record. <i>These data are published with the permission of the CEO, Geoscience Australia. </i>

  • <div>Soil is a complex and spatially variable material that has a demonstrated potential to be a useful evidence class in forensic casework and intelligence operations. Here, the capability to spatially constrain searches and prioritise resources by triaging areas as low and high interest is advantageous. Conducted between 2017 and 2021, a forensically relevant topsoil survey (0-5 cm depth; 1 sample per 1 km2) has been carried out over Canberra, Australia, with the aims of documenting the distribution of chemical elements in an urban/suburban environment, and of acting as a testbed for investigating various aspects of forensic soil provenancing. Geochemical data from X-Ray Fluorescence (XRF; for total major oxides) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; for trace elements) following a total digestion (HF + HNO3) were obtained from the survey’s 685 topsoil samples (plus 138 additional quality control samples and six “Blind” simulated evidentiary samples). Using those “Blind” samples, we document a likelihood ratio approach where for each grid cell the analytical similarity between the grid cell and evidentiary sample is attributed from a measure of overlap between both Cauchy distributions, including appropriate uncertainties. Unlike existing methods that base inclusion/exclusion on an arbitrary threshold (e.g., ± three standard deviations), our approach is free from strict binary or Boolean thresholds, providing an unconstrained gradual transition dictated by the analytical similarity. Using this provenancing model, we present and evaluate a new method for upscaling from a fine (25 m x 25 m) interpolated grid to a more appropriate coarser (500 m x 500 m) grid, in addition to an objective method using Random Match Probabilities for ranking individual variables to be used for provenancing prior to receiving evidentiary material. Our results show this collective procedure generates more consistent and robust provenance maps between two different interpolation algorithms (e.g., inverse distance weighting, and natural neighbour), grid placements (e.g., grid shifts to the north or east) and theoretical users (e.g., different computer systems, or forensic geoscientists).</div> <b>Citation:</b> Michael G. Aberle, Patrice de Caritat, James Robertson, Jurian A. Hoogewerff, A robust interpolation-based method for forensic soil provenancing: A Bayesian likelihood ratio approach,<i> Forensic Science International</i>, Volume 353, 2023, 111883, ISSN 0379-0738. https://doi.org/10.1016/j.forsciint.2023.111883.

  • <div>This guide and template details data requirements for submission of mineral deposit geochemical data to the Critical Minerals in Ores (CMiO) database, hosted by Geoscience Australia, in partnership with the United States Geological Survey and the Geological Survey of Canada. The CMiO database is designed to capture multielement geochemical data from a wide variety of critical mineral-bearing deposits around the world. Samples included within this database must be well-characterized and come from localities that have been sufficiently studied to have a reasonable constraint on their deposit type and environment of formation. As such, only samples analysed by modern geochemical methods, and with certain minimum metadata attribution, can be accepted. Data that is submitted to the CMiO database will also be published via the Geoscience Australia Portal (portal.ga.gov.au) and Critical Minerals Mapping Initiative Portal (https://portal.ga.gov.au/persona/cmmi).&nbsp;</div><div><br></div>

  • <div>A novel method of estimating the silica (SiO2) and loss-on-ignition (LOI) concentrations for the North American Soil Geochemical Landscapes (NASGL) project datasets is proposed. Combining the precision of the geochemical determinations with the completeness of the mineralogical NASGL data, we suggest a ‘reverse normative’ or inversion approach to calculate first the minimum SiO2, water (H2O) and carbon dioxide (CO2) concentrations in weight percent (wt%) in these samples. These can be used in a first step to compute minimum and maximum estimates for SiO2. In a recursive step, a ‘consensus’ SiO2 is then established as the average between the two aforementioned estimates, trimmed as necessary to yield a total composition (major oxides converted from reported Al, Ca, Fe, K, Mg, Mn, Na, P, S, and Ti elemental concentrations + ‘consensus’ SiO2 + reported trace element concentrations converted to wt% + ‘normative’ H2O + ‘normative’ CO2) of no more than 100 wt%. Any remaining compositional gap between 100 wt% and this sum is considered ‘other’ LOI and likely includes H2O and CO2 from the reported ‘amorphous’ phase (of unknown geochemical or mineralogical composition) as well as other volatile components present in soil. We validate the technique against a separate dataset from Australia where geochemical (including all major oxides) and mineralogical data exist on the same samples. The correlation between predicted and observed SiO2 is linear, strong (R2 = 0.91) and homoscedastic. We also compare the estimated NASGL SiO2 concentrations with another publicly available continental-scale survey over the conterminous USA, the ‘Shacklette and Boerngen’ dataset. This comparison shows the new data to be a reasonable representation of SiO2 values measured on the ground over the same study area. We recommend the approach of combining geochemical and mineralogical information to estimate missing SiO2 and LOI by the recursive inversion approach in datasets elsewhere, with the caveat to validate results.</div><div><br></div><div>The major oxide concentrations, including those for the estimated SiO2 and LOI, for the NASGL A and C horizons are available for download, as CSV files. A worked example for five selected NASGL C horizon samples is also available for download, as an XLSX file.</div> <b>Citation:</b> P. de Caritat, E. Grunsky, D.B. Smith; Estimating the silica content and loss-on-ignition in the North American Soil Geochemical Landscapes datasets: a recursive inversion approach. <i>Geochemistry: Exploration, Environment, Analysis</i> 2023; 23 (3): 2023-039 doi: https://doi.org/10.1144/geochem2023-039 This article appears in multiple journals (Lyell Collection & GeoScienceWorld)

  • <div>Environmental DNA (eDNA), elemental and mineralogical analyses of soil have been shown to be specific to their source material, prompting consideration of the use of dust for forensic provenancing. Dust is ubiquitous in the environment and is easily transferred to items belonging to a person of interest, making dust analysis an ideal tool in forensic casework. The advent of Next Generation Sequencing technologies means that metabarcoding of eDNA can uncover microbial, fungal, and even plant genetic fingerprints in dust particles. Combining this with elemental and mineralogical compositions offers multiple, complementary lines of evidence for tracing the origin of an unknown dust sample. This is particularly pertinent when recovering dust from a person of interest to ascertain where they may have travelled. Prior to proposing dust as a forensic trace material, however, the optimum sampling protocols and detection limits need to be established to place parameters around its utility in this context. We tested several approaches to collecting dust from different materials and determined the lowest quantity of dust that could be analysed for eDNA, geochemistry and mineralogy, whilst still yielding results capable of distinguishing between sites. We found that fungal eDNA profiles could be obtained from multiple sample types and that tape lifts were the optimum collection method for discriminating between sites. We successfully recovered both fungal and bacterial eDNA profiles down to 3&nbsp;mg of dust (the lowest tested quantity) and recovered elemental and mineralogical compositions for all tested sample quantities. We show that dust can be reliably recovered from different sample types, using different sampling techniques, and that fungal, bacterial, and elemental and mineralogical profiles, can be generated from small sample quantities, highlighting the utility of dust as a forensic provenance material.</div> <b>Citation:</b> Nicole R. Foster, Belinda Martin, Jurian Hoogewerff, Michael G. Aberle, Patrice de Caritat, Paul Roffey, Robert Edwards, Arif Malik, Priscilla Thwaites, Michelle Waycott, Jennifer Young, The utility of dust for forensic intelligence: Exploring collection methods and detection limits for environmental DNA, elemental and mineralogical analyses of dust samples, <i>Forensic Science International </i>, Volume 344, 2023, 111599, ISSN 0379-0738, https://doi.org/10.1016/j.forsciint.2023.111599. ISSN 0379-0738,

  • This report contains new whole-rock and isotope geochemical data, associated sample metadata, an assessment of the data’s quality assurance, for 742 samples collected in and around the Curnamona and Delamerian provinces, across numerous drillcore sampling campaigns through 2021-23. The data can be downloaded via the Geoscience Australia EFTF portal (https://portal.ga.gov.au/persona/eftf) or in the files attached with this record (http://pid.geoscience.gov.au/dataset/ga/148651). Geochemical sampling in the Curnamona region straddles both South Australia and New South Wales. The objective of sampling was to obtain representative coverage (both stratigraphically and spatially) to support developing regional geochemical baselines (in conjunction with existing geochemistry). Thus, this sampling included both the Curnamona Province and the overlying basins (Eromanga Basin, Lake Eyre Basin). Whole-rock geochemistry is reported for 562 samples, with a subset of 13 samples analysed for Pb and Sr isotopes, and another subset of 36 samples analysed by thin section petrography (all presented herein). Geochemical sampling in the Delamerian region has focussed on available legacy drill core in South Australia, New South Wales and Victoria. The objective of sampling was to (systematically) constrain the geochemical character of magmatic rocks across the mainland extent of the Delamerian Orogen, as well as younger volcanics within the Delamerian Orogen and/or overlying cover. This geochemical sampling was conducted in conjunction with geochronology, mineral systems sampling and stratigraphic drilling (all components of the DCD project) to reinterpret the timing, character and fertility of the Delamerian Orogen. Whole-rock geochemistry is reported for 180 samples. Version 2.0 (published 28 November 2023) has added whole rock geochemistry for 22 new samples in the Delamerian region. The data products and report have been updated accordingly.

  • <div>Geoscience Australia’s Exploring for the Future (EFTF) program aims to enhance decision-making on Australia's mineral, energy, and groundwater resources by providing comprehensive geoscience data. Launched in 2016 with a $225m investment, the program has spawned various national projects, including the Australia's Resources Framework (ARF). The ARF focuses on a national perspective of Australia's surface and subsurface geology, supporting economic and social benefits, including transition to net-zero emissions.</div><div><br></div><div>One key sub-project within EFTF is the Geochemistry for Basin Prospectivity (G4BP) module. It explores Australian basins for basin-hosted base metal systems. The current focus (2020-2024) is on the Stuart Shelf region in South Australia, in collaboration with the Geological Survey of South Australia (GSSA) and CSIRO. The efforts aim to refine our understanding of sediment-hosted copper-cobalt-silver (Cu-Co-Ag) potential in this area.</div><div><br></div><div>This work has two primary objectives:</div><div><br></div><div>Geochemical fingerprinting and baseline data collection: Comprehensive data collection and reanalysis of existing samples aim to establish baseline geochemistry for stratigraphic units.</div><div>Mineral system components: Identification of potential metal sources, fluid sources, and trap rocks using a mineral systems approach.</div><div><br></div><div>This data release forms the second stage release of new geochemical data for the Stuart Shelf region; the first stage release was detailed in Champion et al. (2023b). There is also an earlier data release (Champion et al., 2023a) featuring reanalysis, by modern analytical methods, of legacy mineralised and/or altered Stuart Shelf and underlying basement samples held at Geoscience Australia.</div>

  • <div>Alluvial sediments have long been used in geochemical surveys as their compositions are assumed to be representative of areas upstream. Overbank and floodplain sediments, in particular, are increasingly used for regional to continental-scale geochemical mapping. However, during downstream transport, sediments from heterogeneous source regions are carried away from their source regions and mixed. Consequently, using alluvial sedimentary geochemical data to generate continuous geochemical maps remains challenging. In this study we demonstrate a technique that numerically unmixes alluvial sediments to make a geochemical map of their upstream catchments. The unmixing approach uses a model that predicts the concentration of elements in downstream sediments, given a map of the drainage network and element concentrations in the source region. To unmix sedimentary chemistry, we seek the upstream geochemical map that, when mixed downstream, best fits geochemical observations downstream. To prevent overfitting we penalise the roughness of the geochemical model. To demonstrate our approach we apply it to alluvial samples gathered as part of the Northern Australia Geochemical Survey. This survey gathered samples collected over a ∼ 500,000 km2 area in northern Australia. We first validate our approach for this sample distribution with synthetic tests, which indicate that we can resolve geochemical variability at scales greater than 0.5 – 1◦ in size. We proceed to invert real geochemical data from the total digestion of fine-grained fraction of alluvial sediments. The resulting geochemical maps for two elements of potential economic interest, Cu and Nd, are evaluated in detail. We find that in both cases, our predicted downstream concentrations match well against a held-out, unseen subset of the data, as well as against data from an independent geochemical survey. By performing principal component analysis on maps generated for all 46 available elements we produce a synthesis map showing the significant geochemical domains of this part of northern Australia. This map shows strong spatial similarities to the underlying lithological map of the area. Finally, we compare the results from our approach to a geochemical map produced by kriging. We find that, unlike the method presented here, kriging generates geochemical maps that are both dampened relative to expected magnitude, as well as being spatially distorted. We argue that the unmixing approach is the most appropriate method for generating geochemical maps from regional-scale alluvial surveys.&nbsp;</div> <b>Citation:</b> Alex G. Lipp, Patrice de Caritat, Gareth G. Roberts, Geochemical mapping by unmixing alluvial sediments: An example from northern Australia, <i>Journal of Geochemical Exploration,</i> Volume 248, <b>2023</b>, 107174, ISSN 0375-6742, https://doi.org/10.1016/j.gexplo.2023.107174. (https://www.sciencedirect.com/science/article/pii/S0375674223000213)

  • <div>Diamond exploration over the past decade has led to the discovery of a new province of kimberlitic pipes (the Webb Province) in the Gibson Desert of central Australia. The Webb pipes comprise sparse macrocrystic olivine set in a groundmass of olivine, phlogopite, perovskite, spinel, clinopyroxene, titanian-andradite and carbonate. The pipes resemble ultramafic lamprophyres (notably aillikites) in their mineralogy, major and minor oxide chemistry, and initial 87Sr/ 86Sr and <em>ε</em>Nd-<em>ε</em>Hf isotopic compositions. Ion probe U-Pb geochronology on perovskite (806 ± 22 Ma) indicates the eruption of the pipes was co-eval with plume-related magmatism within central Australia (Willouran-Gairdner Volcanic Event) associated with the opening of the Centralian Superbasin and Rodinia supercontinent break-up. The equilibration pressure and temperature of mantle-derived garnet and chromian (Cr) diopside xenocrysts range between 17 and 40 kbar and 750–1320°C and define a paleo-lithospheric thickness of 140 ± 10 km. Chemical variations of xenocrysts define litho-chemical horizons within the shallow, middle, and deep sub-continental lithospheric mantle (SCLM). The shallow SCLM (50–70 km), which includes garnet-spinel and spinel lherzolite, contains Cr diopside with weakly refertilized rare earth element compositions and unenriched compositions. The mid-lithosphere (70–85 km) has lower modal abundances of Cr diopside. This layer corresponds to a seismic mid-lithosphere discontinuity interpreted as pargasite-bearing lherzolite. The deep SCLM (&gt;90 km) comprises refertilized garnet lherzolite that was metasomatized by a silicate-carbonatite melt.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div><strong>Citation:</strong></div><div>Sudholz, Z. J., et al. (2023). Petrology, age, and rift origin of ultramafic lamprophyres (aillikites) at Mount Webb, a new alkaline province in Central Australia. <i>Geochemistry, Geophysics, Geosystems</i>, 24, e2023GC011120.</div><div>https://doi.org/10.1029/2023GC011120</div>

  • <div>Lithospheric structure and composition have direct relevance for our understanding of mineral prospectivity. Aspects of the lithosphere can be imaged using geophysical inversion or analysed from exhumed samples at the surface of the Earth, but it is a challenge to ensure consistency between competing models and datasets. The LitMod platform provides a probabilistic inversion framework that uses geology as the fabric to unify multiple geophysical techniques and incorporates a priori geochemical information. Here, we present results from the application of LitMod to the Australian continent. The rasters summarise the results and performance of a Markov-chain Monte Carlo sampling from the posterior model space. Release KY22 is developed using the primary-mode Rayleigh phase velocity grids of Yoshizawa (2014).</div><div><br></div><div>Geoscience Australia's Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia's geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia's transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia's regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>