From 1 - 10 / 23
  • <div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20&nbsp;km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500&nbsp;m depth along almost 30,000 line kilometres of nominally 20&nbsp;km line-spaced AEM conductivity sections, across an area of approximately 550,000&nbsp;km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>

  • <div> A key issue for explorers in Australia is the abundant sedimentary and regolith cover obscuring access to underlying potentially prospective rocks. &nbsp;Multilayered chronostratigraphic interpretation of regional broad line-spaced (~20&nbsp;km) airborne electromagnetic (AEM) conductivity sections have led to breakthroughs in Australia’s near-surface geoscience. &nbsp;A dedicated/systematic workflow has been developed to characterise the thickness of cover and the depth to basement rocks, by delineating contact geometries, and by capturing stratigraphic units, their ages and relationships. &nbsp;Results provide a fundamental geological framework, currently covering 27% of the Australian continent, or approximately 2,085,000&nbsp;km2. &nbsp;Delivery as precompetitive data in various non-proprietary formats and on various platforms ensures that these interpretations represent an enduring and meaningful contribution to academia, government and industry.&nbsp;The outputs support resource exploration, hazard mapping, environmental management, and uncertainty attribution.&nbsp;This work encourages exploration investment, can reduce exploration risks and costs, helps expand search area whilst aiding target identification, and allows users to make well-informed decisions. Presented herein are some key findings from interpretations in potentially prospective, yet in some cases, underexplored regions from around Australia.&nbsp;</div> This abstract was submitted & presented to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)

  • MinEx CRC Mundi Airborne Electromagnetic Survey, NSW, 2021: XCITE® AEM data and conductivity estimates The package contains processed data from the “MinEx CRC Mundi Airborne Electromagnetic Survey” that was flown over the Curnamona Orogen and overlying Eromanga and Lake Eyre basins, north of Broken Hill, in Western New South Wales. The 2,940 line regional survey was flown east-west at 2.5 km nominal line spacing in 2021 by New Resolution Geophysics Pty Ltd (NRG) using the XCITE® airborne electromagnetic system. The Geological Survey of New South Wales commissioned the survey as part of the MinEx Cooperative Research Centre’s (MinEx CRC) National Drilling Initiative (NDI), the world’s largest mineral exploration collaboration. It brings together industry, government, research organisations and universities to further our understanding of geology, mineral deposits and groundwater resources in areas where rocks aren’t exposed at earth’s surface. The Geological Survey of New South Wales is a major participant in the NDI program, committing $16 million to the program over 10 years. In NSW, the program focuses on five areas in the state’s central and far west, where metallic minerals potentially exist under a layer of younger barren geology. These areas are North Cobar, South Cobar, Broken Hill (Mundi), Forbes and Dubbo. Geoscience Australia is also a major participant in the NDI, committing $50 million Australia-wide over the ten years of the MinEx CRC. Geoscience Australia partly funded the survey by providing funds for an additional 940 line kilometres of data acquisition to broaden the geographical reach of the survey under the Exploring for the Future Darling-Curnamona-Delamerian Project. Additionally, Geoscience Australia provided in-kind support to the project by managing the survey data acquisition and processing, undertaking the quality control of the survey and generating one of the two inversions and associated derived products that are included in the data package. The data release package comntains 1. A data release package summary PDF document. 2. The survey logistics and processing report and XCITE® system specification files 3. ESRI shape files for the flight lines and boundary 4. KML (Google Earth) files of the flight lines 5. Final processed point located dB/dt electromagnetic, magnetic and elevation data - in ASEG-GDF2 format - in Geosoft GDB format 6. Final processed point located BField electromagnetic, magnetic and elevation data - in ASEG-GDF2 format - in Geosoft GDB format 7, Multiplots -graphical (PDF) multiplot profiles and estimated conductivity sections (NRG inversion) for each flight line 8. Conductivity estimates generated by NRG’s inversion -point located line data output from the inversion in ASEG-GDF2 format -point located line data output from the inversion in Geosoft GDB format -graphical (JPEG) multiplot conductivity sections and profiles for each line -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS) -GoCAD™ S-Grid 3D objects (suitable for various 3D packages) -Curtain image conductivity sections (suitable 3D display in GA’s EarthSci) -grids generated from the NRG inversion in ER Mapper® format (layer conductivities, depth slices, elevation slices) -georeferenced TIFF images generated from the grids above with accompaning world files for georegerencing (layer conductivities, depth slices, elevation slices) -images generated from the grids above (layer conductivities, depth slices, elevation slices) 9. Conductivity estimates generated by Geoscience Australia's inversion -point located line data output from the inversion in ASEG-GDF2 format -graphical (JPEG) multiplot conductivity sections and profiles for each line -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS) -GoCAD™ S-Grid 3D objects (suitable for various 3D packages) -Curtain image conductivity sections (suitable 3D display in GA’s EarthSci) -grids generated from the NRG inversion in ER Mapper® format (layer conductivities, depth slices, elevation slices) -georeferenced TIFF images generated from the grids above with accompaning world files for georegerencing (layer conductivities, depth slices, elevation slices) -images generated from the grids above (layer conductivities, depth slices, elevation slices) Directory structure ├── report ├── shapefiles ├── kml ├── line_data_dbdt ├── line_data_bfield ├── multiplots ├── contractor_inversion │   ├── multiplot_sections │   ├── earthsci │   │   └── Contractor-Inversion │   │   ├── jpeg │   │   ├── geometry │   │   └── MinEx_CRC_Mundi_AEM_Contractor-Inversion │   ├── georef_sections │   ├── gocad_sgrids │   ├── grids │   │   ├── layers │   │   ├── depth_slice │   │   └── elevation_slice │   ├── images │   │   ├── layers │   │   ├── layers_northwest_sunangle │   │   ├── depth_slice_northwest_sunangle │   │   ├── depth_slice │   │   ├── elevation_slice │   │   └── elevation_slice_northwest_sunangle │   ├── line_data │   │   ├── geosoft │   │   └── aseggdf2 │   └── georef_images │   ├── layers_northwest_sunangle │   ├── layers │   ├── depth_slice │   ├── depth_slice_northwest_sunangle │   ├── elevation_slice_northwest_sunangle │   └── elevation_slice ├── ga_inversion    ├── georef_sections    ├── gocad_sgrids    ├── grids    │   ├── depth_slice    │   ├── layers    │   └── elevation_slice    ├── images    │   ├── layers    │   ├── layers_northwest_sunangle    │   ├── depth_slice    │   ├── elevation_slice_northwest_sunangle    │   ├── elevation_slice    │   └── depth_slice_northwest_sunangle    ├── multiplot_sections    ├── line_data    ├── earthsci    │   └── GA-Inversion    │   ├── geometry    │   ├── jpeg    │   └── MinEx_CRC_Mundi_AEM_GA-Inversion    └── georef_images    ├── layers    ├── layers_northwest_sunangle    ├── depth_slice_northwest_sunangle    ├── depth_slice    ├── elevation_slice    └── elevation_slice_northwest_sunangle

  • <div>The Australian wide airborne electromagnetic programme AusAEM stands as the largest survey of its kind aiming to cover the Australian continent at approximately 20 km line-spacing. It is transforming resource exploration, unveiling potential minerals and groundwater.&nbsp;</div><div><br></div><div>The open-access nature of AusAEM data and the modelling codes developed around it encourages collaboration between governments, industry, and academia, fostering a community focused on advancing geoscientific research and exploration.</div><div><br></div><div>Overall, the AusAEM program is an asset that can drive economic growth, support sustainable resource management, and enhance scientific understanding of Australia’s geological landscape.</div><div><br></div>

  • <div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>The Australian Lithospheric Architecture Magnetotelluric project (AusLAMP) is a collaborative, national survey that aims to acquire long period magnetotelluric (MT) data at 0.5° spacing (~55 km) across the Australian continent. AusLAMP started in 2013 and is ~51% complete to date. Over the last decade, regional-scale conductivity/resistivity AusLAMP models have been produced following data acquisition campaigns, but a levelled national model has not emerged. Here we present the largest AusLAMP conductivity model incorporating 85% of data acquired to date. The model images the conductivity structure of the Australian lithosphere across most parts of central and eastern Australia, including Tasmania. The resolved resistivity structures broadly conform with identified major geological domains and crustal boundaries but also reveal significant variations within geological provinces, orogens and cratons. There are strong spatial associations between crustal/mantle conductors and copper and gold deposits and carbonatites, which provide further evidence that major lithospheric conductors control the distributions of a range of mineral systems. This new model is a powerful bottom-up approach to inform exploration, particularly in covered and under-explored regions.</div><div><br></div><div><strong>Citation: </strong>Duan J. & Huston D., 2024. AusLAMP - mapping lithospheric architecture and reducing exploration search space in central and eastern Australia. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/149675</div>

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight-year, $225m investment by the Australian Government.</div><div><br></div><div>The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric (MT) data on a half-degree grid spacing across Australia. This national scale survey aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent, which provides significant additional information about Australia’s geodynamic framework as well as valuable pre-competitive data for resource exploration. As part of the Exploring for the Future Program, Geoscience Australia has completed AusLAMP data acquisition at 32 sites across the southwest and southeast region of Western Australia. The data were acquired using LEMI-424 instruments and were processed using the LEMI robust remote referencing process code.&nbsp;</div><div><br></div><div>This data release contains acquired time series data and processed data at each site. The time series data are in original format (.txt) recorded by the data logger and in MTH5 hierarchical format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded data into MTH5 format. The processed data are in Electrical Data Interchange (EDI) format.&nbsp;&nbsp;</div><div><br></div><div>We acknowledge the Geological Survey of Western Australia for assistance with field logistics and land access, traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected.</div><div><br></div><div>Time series data is available on request from clientservices@ga.gov.au - Quote eCat#&nbsp;149416.</div>

  • <div>Long-period magnetotelluric (MT) data from the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), collected as part of Geoscience Australia’s Exploring for the Future program with contributions from the Northern Territory Geological Survey and the Geological Survey of Queensland, provide important first-order information for resolving large-scale lithospheric architecture and identifying the broad footprint of mineral systems in northern Australia. Large-scale crust/mantle conductivity anomalies map pathways of palaeo-fluid migration which is an important element of several mineral systems. For example, the Carpentaria conductivity anomaly east of Mount Isa and the Croydon, Georgetown to Greenvale conductivity anomaly are highly conductive lithospheric-scale structures, and show spatial correlations with major suture zones and known mineral deposits. These results provide evidence that some mineralisation occurs at the gradient of or over highly conductive structures at lower crustal and lithospheric mantle depths, which may represent fertile source regions for mineral systems. These observations provide a powerful means of highlighting prospective greenfield areas for mineral exploration in under-explored and covered regions.</div><div><br></div><div>Higher resolution scale-reduction MT surveys refine the geometry of some conductive anomalies from AusLAMP data, and investigate whether these deep conductivity anomalies link to the near surface. These links may act as conduits for crustal/mantle scale fluid migration to the upper crust, where they could form mineral deposits. For example, data reveals a favourable crustal architecture linking the deep conductivity anomaly or fertile source regions to the upper crust in the Cloncurry region. In addition, high-frequency MT data help to characterise cover and assist with selecting targets for drilling and improve the understanding of basement geology.</div><div><br></div><div>These results demonstrate that integration of multi-scale MT surveys is an effective approach for mapping lithospheric-scale features and selecting prospective areas for mineral exploration in covered terranes with limited geological knowledge.</div><div><br></div><div>Some models in this presentation were produced on the National Computational Infrastructure, which is supported by the Australian government. Abstract presented to the Australian Institute of Geoscientists – ALS Friday Seminar Series: Geophysical and Geochemical Signatures of Queensland Mineral Deposits October 2023 (https://www.aig.org.au/events/aig-als-friday-seminar-series-geophysical-and-geochemical-signatures-of-qld-mineral-deposits/)

  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric (MT) data on a half-degree grid spacing across Australia. This national scale survey aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent, which provides significant additional information about Australia’s geodynamic framework as well as valuable pre-competitive data for resource exploration. Geoscience Australia in collaboration with the Geological Survey of New South Wales (GSNSW) has completed AusLAMP data acquisition at 321 sites across the state of NSW. The data were acquired using LEMI-424 instruments and were processed using the Lemigraph software. The processed data in EDI format and report of field acquisition, data QA/QC, and data processing have been released in 2020 (https://pid.geoscience.gov.au/dataset/ga/132148). This data release contains acquired time series data at each site in two formats: 1. MTH5, a hierarchical data format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded LEMI data into MTH5 format. 2. Text file (*.TXT). This is the original format recorded by the LEMI-424 data logger. We acknowledge the traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected. <b>Data is available on request from clientservices@ga.gov.au - Quote eCat# 148544</b>

  • <div>In Australia, wide-spread sedimentary basin and regolith cover presents a key challenge to explorers, environmental managers and decision-makers, as it obscures underlying rocks of interest. To address this, a national coverage of airborne electromagnetics (AEM) with a 20&nbsp;km line-spacing is being acquired. This survey is acquired as part of the Exploring for the Future program and in collaboration with state and territory geological surveys. This survey presents an opportunity for regional geological interpretations on the modelled AEM data, helping constrain the characteristics of the near-surface geology beneath the abundant cover, to a depth of up to ~500&nbsp;m.</div><div> The AEM conductivity sections were used to delineate key chronostratigraphic boundaries, e.g. the bases of geological eras, and provide a first-pass interpretation of the subsurface geology. The interpretation was conducted with a high level of data integration with boreholes, potential fields geophysics, seismic, surface geology maps and solid geology maps. This approach led to the construction of well-informed geological interpretations and provided a platform for ongoing quality assurance and quality control of the interpretations and supporting datasets. These interpretations are delivered across various platforms in multidimensional non-proprietary open formats, and have been formatted for direct upload to Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository of multidisciplinary subsurface depth estimates.</div><div> These interpretations have resulted in significant advancements in our understanding of Australia’s near-surface geoscience, by revealing valuable information about the thickness and composition of the extensive cover, as well as the composition, structure and distribution of underlying rocks. Current interpretation coverage is ~110,000 line kilometres of AEM conductivity sections, or an area &gt;2,000,000&nbsp;km2, similar to the area of Greenland or Saudi Arabia. This ongoing work has led to the production of almost 600,000 depth estimate points, each attributed with interpretation-specific metadata. Three-dimensional line work and over 300,000 points are currently available for visualisation, integration and download through the GA Portal, or for download through GA’s eCat electronic catalogue. </div><div> These interpretations demonstrate the benefits of acquiring broadly-spaced AEM surveys. Interpretations derived from these surveys are important in supporting regional environmental management, resource exploration, hazard mapping, and stratigraphic unit certainty quantification. Delivered as precompetitive data, these interpretations provide users in academia, government and industry with a multidisciplinary tool for a wide range of investigations, and as a basis for further geoscientific studies.</div> Abstract submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • <div>This package contains Airborne Electromagnetic (AEM) data from the regional survey flown over the Upper Darling Floodplain in New South Wales (NSW), Australia between March-July 2022. Approximately 25,000 line km of transient EM and magnetic data were acquired. Geoscience Australia (GA) commissioned the survey in collaboration with the New South Wales Department of Planning and Environment (NSW DPE) as part of the Australian Government’s Exploring for the Future (EFTF) program (https://www.ga.gov.au/eftf). The NSW DPE were funding contributors to the AEM data collection. GA managed all aspects of the acquisition, quality control and processing of the AEM data.</div>