From 1 - 10 / 21
  • This web map service provides the locations and status, as at 30 June 2020, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future.

  • This web map service provides the locations and status, as at 30 June 2020, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future.

  • This web map service provides the locations and status, as at 30 June 2020, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future.

  • The Australian Mine Waste database contains mine waste features including mine waste name, waste type, waste status, storage type and geographical location. It also includes relational links to the associated mineral deposit, the associated deposit commodities as well as mineral deposit models modified from the Critical Mineral Mapping Initiative mineral deposit classification scheme (Hofstra et al., 2021). Where available, additional information has been included such as structure type, volume and rehabilitation status. This data has been compiled from published references and public information such as company reports. The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/persona/minewaste)

  • This web service delivers datasets produced by the Critical Minerals Mapping Initiative (CMMI), a collaboration between Geoscience Australia (GA), the Geological Survey of Canada (GSC) and the United States Geological Survey (USGS). Data in this service includes geochemical analyses of over 7000 samples collected from or near mineral deposits from 60 countries, and mineral prospectivity models for clastic-dominated (Zn, Pb) and Mississippi Valley-type (Zn-Pb) deposits across Canada, the United States, and Australia.

  • This web service delivers datasets produced by the Critical Minerals Mapping Initiative (CMMI), a collaboration between Geoscience Australia (GA), the Geological Survey of Canada (GSC) and the United States Geological Survey (USGS). Data in this service includes geochemical analyses of over 7000 samples collected from or near mineral deposits from 60 countries, and mineral prospectivity models for clastic-dominated (Zn, Pb) and Mississippi Valley-type (Zn-Pb) deposits across Canada, the United States, and Australia.

  • This web map service provides visualisations of datasets prepared for the Technology Investment Roadmap Data Portal. The service has been developed using various mineral deposit, mine location and industrial plant location datasets sourced from the Australia’s Identified Mineral Resources (2019), produced by Geoscience Australia (http://dx.doi.org/10.11636/1327-1466.2018)

  • <div>The lookbook accompanies a loan of Australian critical mineral samples provided by Geoscience Australia for display at the Australian Embassy in Washington DC, United States.&nbsp; It contains information about each of the samples, including their provenance, mineral or rock name, and the critical mineral they contain.</div>

  • <div>This guide and template details data requirements for submission of mineral deposit geochemical data to the Critical Minerals in Ores (CMiO) database, hosted by Geoscience Australia, in partnership with the United States Geological Survey and the Geological Survey of Canada. The CMiO database is designed to capture multielement geochemical data from a wide variety of critical mineral-bearing deposits around the world. Samples included within this database must be well-characterized and come from localities that have been sufficiently studied to have a reasonable constraint on their deposit type and environment of formation. As such, only samples analysed by modern geochemical methods, and with certain minimum metadata attribution, can be accepted. Data that is submitted to the CMiO database will also be published via the Geoscience Australia Portal (portal.ga.gov.au) and Critical Minerals Mapping Initiative Portal (https://portal.ga.gov.au/persona/cmmi).&nbsp;</div><div><br></div>

  • The stabilities of uranyl-carbonate and uranyl-hydroxide aqueous complexes were experimentally determined at temperatures ranging from 25 to 125 °C using in situ UV–vis and Raman spectroscopic techniques. Combined with earlier determinations of the stability of chloride, sulfate, and hydroxide complexes at temperatures up to 250 °C, these data permit to create a consolidated dataset suitable for modeling of U(VI) mobilization in natural systems. The parameters of the Modified Ryzhenko-Bryzgalin and the Helgeson-Kirkham-Flowers (HKF) Equations of State (EoS) were derived based on this dataset and used for thermodynamic modeling different scenarios of U(VI) mobilization. These models suggest that at conditions relevant to natural systems, carbonate-mediated transport of U(VI) is likely suppressed by the high stability of solid UO2(OH)2 and Na2U2O7. In contrast, sulfate-mediated mobilization mechanisms are highly efficient at acidic and near-neutral pH conditions and can lead to effective hydrothermal mobilization of U(VI). <b>Citation:</b> A. Migdisov, E. Bastrakov, C. Alcorn, M. Reece, H. Boukhalfa, F.A. Capporuscio, C. Jove-Colon, A spectroscopic study of the stability of uranyl-carbonate complexes at 25–150 °C and re-visiting the data available for uranyl-chloride, uranyl-sulfate, and uranyl-hydroxide species, <i>Geochimica et Cosmochimica Acta</i>, 2024, ISSN 0016-7037, https://doi.org/10.1016/j.gca.2024.04.023.