seismic hazard
Type of resources
Keywords
Publication year
Topics
-
The Philippine archipalego is tectonically complex and seismically hazardous, yet few seismic hazard assessments have provided national coverage. This paper presents an updated probabilistic seismic hazard analysis for the nation. Active shallow crustal seismicity is modeled by faults and gridded point sources accounting for spatially variable occurrence rates. Subduction interfaces are modelled with faults of complex geometry. Intraslab seismicity is modeled by ruptures filling the slab volume. Source geometries and earthquake rates are derived from seismicity catalogs, geophysical datasets, and historic-to-paleoseismic constraints on fault slip rates. The ground motion characterization includes models designed for global use, with partial constraint by residual analysis. Shallow crustal faulting near metropolitan Manila, Davao, and Cebu dominates shaking hazard. In a few places, peak ground acceleration with 10% probability of exceedance in 50 years on rock reaches 1.0 g. The results of this study may assist in calculating the design base shear in the National Structural Code of the Philippines.
-
In plate boundary regions moderate to large earthquakes are often sufficiently frequent that fundamental seismic parameters such as the recurrence intervals of large earthquakes and maximum credible earthquake (Mmax) can be estimated with some degree of confidence. The same is not true for the Stable Continental Regions (SCRs) of the world. Large earthquakes are so infrequent that the data distributions upon which recurrence and Mmax estimates are based are heavily skewed towards magnitudes below Mw5.0, and so require significant extrapolation up to magnitudes for which the most damaging ground-shaking might be expected. The rarity of validating evidence from surface rupturing palaeo-earthquakes typically limits the confidence with which these extrapolated statistical parameters may be applied. Herein we present a new earthquake catalogue containing, in addition to the historic record of seismicity, 150 palaeo-earthquakes derived from 60 palaeo-earthquake features spanning the last > 100 ka of the history of the Precambrian shield and fringing extended margin of southwest Western Australia. From this combined dataset we show that Mmax in non-extended-SCR is M7.25 ± 0.1 and in extended-SCR is M7.65 ± 0.1. We also demonstrate that in the 230,000 km2 area of non-extended-SCR crust, the rate of seismic activity required to build these scarps is one tenth of the contemporary seismicity in the area, consistent with episodic or clustered models describing SCR earthquake recurrence. A dominance in the landscape of earthquake scarps reflecting multiple events suggests that the largest earthquakes are likely to occur on pre-existing faults. We expect these results might apply to most areas of non-extended-SCR worldwide.
-
We present a preliminary probabilistic seismic hazard analysis (PSHA) of a site in the Otway basin, Victoria, Australia, as part of the CO2CRC Otway Project for CO2 storage risk. The study involves estimating the likelihood of future strong earthquake shaking at the site and utilizes three datasets: (1) active faults, (2) historical seismicity, and (3) geodetic surface velocities. Our analysis of geodetic data reveals strain rates at the limit of detectability and not significantly different from zero. Consequently, we do not develop a geodetic-based source model for this Otway model. We construct logic trees to capture epistemic uncertainty in both the fault and seismicity source parameters and in the ground-motion prediction. A new feature for seismic hazard modeling in Australia, and rarely dealt with in low-seismicity regions elsewhere, is the treatment of fault episodicity (long-term activity versus inactivity) in our Otway model. Seismic hazard curves for the combined (fault and distributed seismicity) source model show that hazard is generally low, with peak ground acceleration estimates of less than 0.1g at annual probabilities of 10-3-10-4/yr. Our preliminary analysis therefore indicates that the site is exposed to a low seismic hazard that is consistent with the intraplate tectonic setting of the region and unlikely to pose a significant hazard for CO2 containment and infrastructure.
-
<div>COMET (The Centre for Observation and Modelling of Earthquakes, Volcanoes and Tectonics) uses satellite measurements alongside ground-based observations and geophysical models to study active faults and earthquakes. This talk provides an overview of COMET research products in Türkiye and Central Asia, where interseismic deformation and active faults are directly observable. It also touches on how these products highlight the complexity and difficulty of seismic hazard modelling in Australia. </div><div>Three COMET datasets will be discussed, which each contribute to seismic hazard models. Researchers at COMET have and continue to pioneer INSAR methods including co-seismic interferograms and time-series modelling. For example, the Türkiye (Türkiye) INSAR strain-rate map directly estimates strain-accumulation across faults, while the LICSAR portal and satellite cross-correlation methods are used to quantify co-seismic and post-seismic deformation (including after the devastating 2023 Türkiye-Syria earthquake). </div><div>Similar methods are applied in the Tien Shan, where active faults are identifiable in satellite imagery and elevation data, but rates of activity are uncertain and expensive to obtain through field work. Here COMET and GEM (the Global Earthquake Model) are collaborating to produce block-model informed PSHA inputs using active fault databases, GNSS, and INSAR. </div><div>While these methods are useful in tectonically active regions, they serve to highlight the difficulties facing Australian seismic hazard modelling where similar methods cannot be used due to low (to unobservable) tectonic strain and very long fault recurrence. </div> This paper was presented to the 2023 Australian Earthquake Engineering Conference 23-25 November 2023 (https://aees.org.au/aees-conference-2023/)
-
Because all modern ground motion prediction equations (GMPEs) are now calibrated to the moment magnitude scale MW, it is essential that earthquake rates are also expressed in terms of moment magnitudes for probabilistic seismic hazard analyses. However, MW is not routinely estimated for earthquakes in Australia because of the low-to-moderate level of seismicity, coupled with the relatively small number of seismic recording stations. As a result, the Australian seismic catalogue has magnitude measures mainly based on local magnitudes, ML. To homogenise the earthquake catalogue based on a uniform MW, a “reference catalogue” that includes earthquakes with available MW estimates was compiled. This catalogue consists of 240 earthquakes with original MW values between 2.0 and 6.58. This reference catalogue served as the basis for the development of magnitude conversion equations between MW and other magnitude scales: ML, body-wave magnitude mb, and surface-wave magnitude MS. The conversions were evaluated using general orthogonal regression (GOR), which accounts for measurement errors in the x and y variables, and provides a unique solution that can be used interchangeably between magnitude types. The impact of the derived magnitude conversion equations on seismic hazard is explored by generating synthetic earthquake catalogues and computing seismic hazard level at an arbitrary site. The results indicate that we may expect up to 20-40% reduction in PGA hazard, depending on the selection and application process of the magnitude conversion equations. Abstract submitted to and presented at the 2017 Australian Earthquake Engineering Society (AEES) Conference
-
Modern probabilistic seismic hazard assessments rely on earthquake catalogs consistently expressed in terms of moment magnitude, MW. However, MW is still not commonly calculated for small local events by many national networks. The preferred magnitude type calculated for local earthquakes by Australia’s National Earthquake Alerts Centre is local magnitude, ML. For use in seismic hazard forecasts, magnitude conversion equations are often applied to convert ML to MW. Unless these conversions are time-dependent, they commonly assume that ML estimation has been consistent for the observation period. While Australian-specific local magnitude algorithms were developed from the late 1980s and early 1990s, regional, state and university networks did not universally adopt these algorithms, with some authorities continuing to use Californian magnitude algorithms. Californian algorithms are now well-known to overestimate earthquake magnitudes for Australia. Consequently, the national catalogue contains a melange of contributing authorities with their own methods of magnitude estimation. The challenge for the 2018 National Seismic Hazard Assessment of Australia was to develop a catalog of earthquakes with consistent local magnitudes, which could then be converted to MW. A method was developed that corrects magnitudes using the difference between the original (inappropriate) magnitude formula and the Australian-specific corrections at a distance determined by the nearest recording station likely to have recorded the earthquake. These corrections have roughly halved the rates of ML 4.5 earthquakes in the Australian catalogue. To address ongoing challenges for catalog improvement, Geoscience Australia is digitising printed and hand-written observations preserved on earthquake data sheets. Once complete, this information will provide a valuable resource that will allow for further interrogation of pre-digital data and enable refinement of historical catalogs. Presented at the 2019 Seismological Society of America Conference, Seattle in the special session on “Seismology BC(d)E: Seismology Before the Current (digital) Era”
-
An updated National Seismic Hazard Assessment of Australia was released in 2018 (the NSHA18). This assessment leveraged off advances in earthquake-hazard science in Australia and analogue tectonic regions to offer many improvements over its predecessors. The outcomes of the assessment represent a significant shift in the way national-scale seismic hazard is modelled in Australia, and so challenged long-held notions of seismic hazard amongst the Australian seismological and earthquake engineering community. The NSHA18 is one of the most complex national-scale seismic hazard assessments conducted to date, comprising 19 independent seismic source models (contributed by Geoscience Australia and third-party contributors) with three tectonic region types, each represented by at least six ground motion models each. The NSHA18 applied a classical probabilistic seismic hazard analysis (PSHA) using a weighted logic tree approach, where the model weights were determined through two structured expert elicitation workshops. The response from the participants of these workshops was overwhelmingly positive and the participants appreciated the opportunity to contribute towards the model’s development. Since the model’s publication, Geoscience Australia has been able to reflect on the choices made both through the expert elicitation process and through decisions made by the NSHA18 team. The consequences of those choices on the production of the final seismic hazard model may not have been fully appreciated prior to embarking on the development of the NSHA18, nor during the expert elicitation workshops. The development of the NSHA18 revealed several philosophical challenges in terms of characterising seismic hazard in regions of low seismicity such as Australia. Chief among these are: 1) the inclusion of neotectonic faults, whose rupture characteristics are underexplored and poorly understood; 2) processes for the adjustment and conversion of historical earthquake magnitudes to be consistently expressed in terms of moment magnitude; 3) the relative weighting of different seismic-source classes (i.e., background, regional, smoothed seismicity, etc) for different regions of interest and exceedance probabilities; 4) the assignment of Gutenberg-Richter b-values for most seismic source models based on b-values determined from broad neotectonic domains, and; 5) the characterisation and assignment of ground-motion models used for different tectonic regimes. This paper discusses lessons learned through the development of the NSHA18, identifies successes in the expert elicitation and modelling processes, and explores some of the abovementioned challenges that could be reviewed for future editions of the model. Abstract presented at the 17th World Conference on Earthquake Engineering (17WCEE )
-
Geoscience Australia has produced a draft National Seismic Hazard Assessment (NSHA18), together with contributions from the wider Australian seismology community. This paper provides an overview of the provisional peak ground acceleration (PGA) hazard values and discusses rationale for changes in the proposed design values at the 1/500-year annual exceedance probability (AEP) level relative to Standards Australia’s AS1170.4–2007 design maps. The NSHA18 update yields many important advances on its predecessors, including: consistent expression of earthquake magnitudes in moment magnitude; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model; inclusion of epistemic uncertainty on fault-slip-model magnitude-frequency distributions and earthquake clustering; and the use of modern ground-motion models through a weighted logic tree framework. In general, the 1/500-year AEP seismic hazard values across Australia have decreased relative to the earthquake hazard factors the AS1170.4–2007, in most localities significantly. The key reasons for the decrease in seismic hazard factors are due to: the reduction in the rates of moderate-to-large earthquakes through revision of earthquake magnitudes; the increase in b-values through the conversion of local magnitudes to moment magnitudes, particularly in eastern Australia, and; the use of modern ground-motion attenuation models. Whilst the seismic hazard is generally lower than in the present standard, we observe that the relative proportion of the Australian landmass exceeding given PGA thresholds is consistent with other national hazard models for stable continental regions. Abstract presented at the 2017 Australian Earthquake Engineering Society (AEES) Conference
-
<div>The presence of Pliocene marine sediments in the Myponga and Meadows basins within the Mt Lofty Ranges south of Adelaide is testament to over 200 m of tectonic uplift within the last 5 Myr (e.g., Sandiford 2003, Clark 2014). The spatiotemporal distribution of uplift amongst the various faults within the range and along the range fronts is poorly understood. Consequently, large uncertainties are associated with estimates of the hazard that the faults pose to proximal communities and infrastructure.</div><div> </div><div>We present the preliminary results of a paleoseismic investigation of the southern Willunga Fault, ~40 km south of Adelaide. Trenches were excavated across the fault to examine the relationships between fault planes and sedimentary strata. Evidence is preserved for 3-5 ground-rupturing earthquakes since the Middle to Late Pleistocene, with single event displacements of 0.5 – 1.7 m. Dating of samples will provide age constraints on the timing of these earthquakes. This most recent part of the uplift history may then be related to the longer-term landscape evolution evidenced by the uplifted basins, providing an enhanced understanding of the present-day seismic hazard.</div> This abstract was presented at the Australian & NZ Geomorphology Group (ANZGG) Conference in Alice Springs 26-30 September 2022. https://www.anzgg.org/images/ANZGG_2022_First_circular_Final_V3.pdf
-
An earthquake catalogue based on the moment magnitude scale is required for calculation of seismic hazard in Australia. However, the estimation of moment magnitudes for small to moderate sized earthquakes is not a routine process at seismic observatories, resulting in a catalogue mainly based on the local magnitude scale for Australia. In this study we explore the application of an automated procedure to estimate moment magnitudes by minimizing the misfit between observed and synthetic displacement spectra. We compile a reference catalogue of 15 earthquakes with moment magnitude values between 3.8 and 5.4 which were based on previous studies. The moment magnitudes were then recalculated and we find that the estimated moment magnitudes are in good agreement with reference values with differences mainly lower than 0.2. However, the reported local magnitudes of the selected events are consistently higher than the reference values with differences between 0.3 and 1.0. The automated procedure will be applied to compute moment magnitudes of the well recorded events in Australia, and to derive a scaling relation between local magnitude and moment magnitude. This abstract was submitted and presented to the 2016 Australian Earthquake Engineering Society Conference (AEES) ( https://aees.org.au/aees-asian-seismological-commission-conferences/)