minerals
Type of resources
Keywords
Publication year
Service types
Topics
-
Joint Release of the National ASTER geoscience maps at IGC The ASTER (Advanced Spaceborne Thermal Emission and Reflectance Radiometer) Geoscience Maps are the first public, web-accessible, continent-scale product release from the ASTER Global Mapping data archive. The collaborative Australian ASTER Initiative represents a successful multi-agency endeavour, led by the Western Australian Centre of Excellence for 3D Mineral Mapping (C3DMM) at CSIRO, Geoscience Australia and the State and Territory government geological surveys of Australia, along with other national and international collaborators. National ASTER geoscience map These geoscience maps are released in GIS format as 1:1M map-sheet tiles, from 3,000 ASTER scenes of 60x60km. Each scene was cross-calibrated and validated using independent Hyperion satellite imagery. The new ASTER geoscience products range in their application from local to continental scales, and their uses include mapping of soils for agricultural and environmental management, such as estimating soil loss, dust management and water catchment modelling. They will also be useful for resource exploration, showing host rock, alteration and regolith mineralogy and providing new mineral information at high spatial resolution (30m pixel). This information is not currently available from other pre-competitive geoscience data.
-
During the Mullins Harbour - Wedau Reconnaissance (South Eastern Papua) carried [out] in 1953 by Mr. J.E. Thompson, Senior Geologist of the Bureau of Mineral Resources, a section was sampled along the Middle Nigo-Nigo River. Of a number of samples sent to Canberra for petrological and palaeontological examination only eight proved fossiliferous. The following is a list of samples examined listing lithology and microfauna determined by the author and the age assigned to each.
-
A collection of mining and explotation tenements supplied by the individual state and territory bodies. Loaded monthly to an Oracle database from shapefiles given to Geoscience Australia.
-
This study brings together a wide range of datasets to provide a comprehensive assessment of the Pandurra Formation sedimentology and geochemistry in 3D. This record is associated with both the GA Record and the digitial data release. Sedimentology and geochemistry datasets generated this study are combined with pre-existing data to generate a 3D interpretation of the Pandurra Formation and improve understanding of how the Pandurra Formation as we see it today was deposited and subsequently post-depositionally mineralised. The digital release incorporates the underlying digital data generated this study, the final gOcad objects generated, and reference datasets from Wilson et al., 2011 as required. Study extent in eastings and northings: SW Corner (444200, 6263000) NE Corner (791409, 6726000).
-
Australia's Identified Mineral Resources is an annual national assessment that takes a long-term view of Australian mineral resources likely to be available for mining. The assessment also includes evaluations of long-term trends in mineral resources, world rankings, summaries of significant exploration results and brief reviews of mining industry developments.
-
Australia wide mineralogical maps have recently been generated and released by CSIRO and Geoscience Australia using the 14 band satellite-borne ASTER imaging sensors. Seventeen map products related to surface composition have been produced for the geoscience community. Band parameters were developed based on spectral absorption features representing either abundance of mineral groups, specific minerals and their chemistry, vegetation cover or regolith related characteristics. A detailed study was undertaken, investigating the geoscience exploration capabilities of these newly released map products, individually, and integrated with airborne geophysics and digital elevation models over the Mt Fitton test site in northern Flinders Ranges, South Australia. This site includes the Mt Fitton talc deposits, gold prospects, and areas of hydrothermal activity and metasomatism.
-
Dr Andy Barnicoat's presentation at the China Mining Conference 2012 in Tianjin.
-
Increases in atmospheric CO¬2 cause the oceanic surface water to continuously acidify, which has multiple and profound impacts on coastal and continental shelf environments. Here we present the carbonate mineral composition in surface sediments from a range of continental shelf seabed environments and their current and predicted stability under ocean acidifying conditions. Samples come from the following four tropical Australian regions. 1. Capricorn Reef (southern end of the Great Barrier Reef). 2. The Great Barrier Reef Lagoon. 3. Torres Strait. 4. The eastern Joseph Bonaparte Gulf. Outside of the near-shore zone, these regions typically have a carbonate content in surface sediments of 80 wt% or more. The abundance of high magnesium-calcites (HMC) dominates over aragonite (Arag) and low magnesium-calcite (LMC) and makes up between 36 and 50% of all carbonate. HMC is significantly more soluble than Arag and LMC and the solubility of HMC positively correlates with its magnesium concentration. Using the solubility data by Plummer and Mackenzie (1974) (1), 96% of HMC in the four regions is presently in thermodynamic equilibrium or slightly supersaturated relative to global mean tropical sea surface water. When the modelled saturation state for aragonite in equatorial areas for this century (2) is converted into HMC saturation state curves, HMC is predicted to become undersaturated in the four regions between 2040 to 2080 AD with typical HMC decline rates between 2 and 5% per year. The range of respective estimated carbonate dissolution rates is expected to exceed current continental shelf carbonate accumulation rates leading to net dissolution of carbonate during the period of HMC decline. In a geological context, the decline in HMC is a global event in tropical continental shelf environments triggered by reaching below-equilibrium conditions. The characteristic change in carbonate mineral composition in continental shelf sediments will serve as a geological marker for the proposed Anthropocene Epoch.
-
Collection of mineral and meteorite specimens derived from Geoscience Australia (GA) surveys, donations, purchases and bequests, some of which are held for Australian National Museum. Sample are displayed in GA foyer, National Museum of Australia, Miners Hall of Fame in Kalgoorlie, Department of Resources, Energy and Tourism (RET) and Australian Petroleum Production and Exploration Association (APPEA) and in several other organisations. Co-located is a teaching set of rocks and minerals used by the education centre, the 'Crown Jewels' large ore/rock specimens, off-cuts from building stone used in the construction of Parliament House, and presentation boxes of rock or mineral specimens given to GA staff in Australia and overseas.
-
The mineral resources sector plays a vital role in Australia’s ongoing economic prosperity. The sector dominates the nation’s export earnings, provides substantial direct and indirect employment and investment in regional and indigenous communities, supports downstream and service industries, and delivers essential revenue to governments.