From 1 - 10 / 51
  • Terrain affects optical satellite images through both irradiance and BRDF effects. It results in the slopes facing toward the sun receiving enhanced solar irradiance and appearing brighter compared to those facing away from the sun. For anisotropic surfaces, the radiance received at the satellite sensor from a sloping surface is also affected by surface BRDF which varies with combinations of surface landcover types, sun, and satellite as well as topographic geometry. Consequently, to obtain comparable surface reflectance from satellite images covering mountainous areas, it is necessary to process the images to reduce or remove the topographic effect so that the images can be used for different purposes. The most common method of normalising for the topographic effect is by using a Digital Surface Model (DSM). However, the accuracy of the correction depends on the accuracy, scale and spatial resolution of DSM data as well as the co-registration between the DSM and satellite images. A physically based BRDF and atmospheric correction model in conjunction with the 1-second SRTM derived DSM product were used to conduct the analysis. The results show that artefacts in the DSM data can cause significant local errors in the correction. For some areas, false shadow and over corrected surface reflectance factors have been observed. In other areas, the algorithm is unable to detect shadow or retrieve an accurate surface reflectance factor. The accuracy of co-registration between satellite images and DSM data is important for the topographic correction. A mis-registration error of one or two pixels can lead to large error in the gully and ridge areas. Therefore, accurate registration for both satellite images and DSM data is necessary to ensure the accuracy of the correction. Using low resolution DSM data to correct high resolution satellite images can fail to correct some significant terrain effects.

  • Next Generation Mineral Mapping (NGMM) is a CSIRO Minerals Down Under initiative aimed at developing spectral sensing capabilities in collaboration with the government geological agencies across Australia for delivering a new range of pre-competitive geoscience information at low cost to the resources industry. A 2 year multi-organisational project was established in July 2006 and involved the collection of 25000 km2 of airborne HyMap imagery (~250 flight-lines at 5m pixel resolution), over 100 ASTER scenes and associated ground and laboratory validation data collected along major structural/geological corridors across Queensland. This paper will show the effectiveness of software/methods for delivering seamless, accurate mineral and geologic maps from HyMap and ASTER data through comparison with field and laboratory validation data, as well as some geological case histories including. - Geothermometric (metamorphic temperature) mapping using clay physicochemistry; - Local to regional hydrothermal alteration cells associated with the Century Pb-Zn and Starra Au-Cu deposits; and - Associated environmental indicators from remote spectral data for resource development, including dust mapping/monitoring. These results and capabilities also have major implications for mapping soil mineralogy and related properties/processes at local-, catchment- and continental-scales, including soil pH, metal availability, water (content, permeability/runoff), soil loss and organic carbon stocks. The mineral maps and associated data from this project are available on the web (www.em.csiro.au/NGMM).

  • Spectral data from airborne and ground surveys enable mapping of the mineralogy and chemistry of soils in a semi-arid terrain of Northwest Queensland. The study site is a region of low relief, 20 km southeast of Duchess near Mount Isa. The airborne hyperspectral survey identified more than twenty surface components including vegetation, ferric oxide, ferrous iron, MgOH, and white mica. Field samples were analysed by spectrometer and X-ray diffraction to test surface units defined from the airborne data. The derived surface materials map is relevant to soil mapping and mineral exploration, and also provides insights into regolith development, sediment sources, and transport pathways, all key elements of landscape evolution.

  • This product includes the remote sensing information booklet + student activities + one set of five A4 image cards. Discovering Remote Sensing - an introduction does not contain any overhead projection images. Suitable for secondary Years 8-12.

  • This project commenced in November 2012 and is intended to provide satellite data and related scientific services to support the Murray-Darling Basin Authority's monitoring of how the condition of riparian vegetation responds to changing river run-off and wetland inundation levels. Under this project, Geoscience Australia started to build a satellite data processing infrastructure; named the 'datacube', as a proof of concept for expected on-going time series analysis applications including historical flood and bathymetry mapping. The work incorporates an automated processing chain for Landsat satellite images from Geoscience Australia's extensive archive, into customised high level intermediate products, including automated ortho-rectification, atmospheric correction, cloud-removal, and mosaicking, and finally into statistics on the spectral and derivative indices (that is, vegetation condition indices or various types) for the summer periods of December-March, each year for the period 2000-2013. These vegetation indices and associate statistics are then used, by the Murray-Darling Basin Authority and its collaborators, as inputs to a mathematical model of vegetation types and their respective conditions within the Murray-Darling Basin.

  • Legacy product - no abstract available

  • If colour TMI map is purchased with greyscale TMI map the price is $269.80 (inc GST) for both

  • Commercial-in-confidence consultancy report prepared for NSW Department of Infrastructure, Planning and Natural Resources. The report reviews the Na-24 salinity mapping technology of Natural Resource Intelligence Pty Ltd.