earthquake hazard
Type of resources
Keywords
Publication year
Topics
-
This ecat record refers to the data described in ecat record 123048. The data, supplied in shapefile format, is an input to the 2018 National Seismic Hazard Assessment for Australia (NSHA18) product (ecat 123020) and the 2018 Probabilistic Tsunami Hazard Assessment for Australia (PTHA18) product (ecat 122789).
-
Located within an intraplate setting, continental Australia has a relatively low rate of seismicity compared with its surrounding plate boundary regions. However, the plate boundaries to the north and east of Australia host significant earthquakes that can impact Australia. Large plate boundary earthquakes have historically generated damaging ground shaking in northern Australia, including Darwin. Large submarine earthquakes have historically generated tsunami impacting the coastline of Australia. Previous studies of tsunami hazard in Australia have focussed on the threat from major subduction zones such as the Sunda and Kermadec Arcs. Although still subject to uncertainty, our understanding of the location, geometry and convergence rates of these subduction zones is established by global tectonic models. Conversely, actively deforming regions in central and eastern Indonesia, the Papua New Guinea region and the Macquarie Ridge region are less well defined, with deformation being more continuous and less easily partitioned onto discrete known structures. A number of recently published geological, geodetic and seismological studies are providing new insights into present-day active tectonics of these regions, providing a basis for updating earthquake source models for earthquake and tsunami hazard assessment. This report details updates to earthquake source models in active tectonic regions along the Australian plate boundary, with a primary focus on regions to the north of Australia, and a subsidiary focus on the Puyesgur-Macquarie Ridge-Hjort plate boundary south of New Zealand. The motivation for updating these source models is threefold: 1. To update regional source models for the 2018 revision of the Australian probabilistic tsunami hazard assessment (PTHA18); 2. To update regional source models for the 2018 revision of the Australian national seismic hazard assessment (NSHA18); and 3. To provide an updated database of earthquake source models for tsunami hazard assessment in central and eastern Indonesia, in support of work funded through the Department of Foreign Affairs and Trade (DFAT) DMInnovation program.
-
One of the key challenges in assessing earthquake hazard in Australia is understanding the attenuation of ground-motion through the stable continental crust. There are now a handful of ground-motion models (GMMs) that have been developed specifically to estimate ground-motions from Australian earthquakes. These GMMs, in addition to models developed outside Australia, are considered in the 2018 National Seismic Hazard Assessment (NSHA18; Allen et al., 2017). In order to assess the suitability of candidate GMMs for use in the Australian context, ground-motion data forom small-to-moderate Australian earthquakes have been gathered. Both qualitative and quantitative ranking techniques (e.g., Scherbaum et al., 2009) have been applied to determine the suitability of candidate GMMs for use in the NSHA18. This report provides a summary of these ranking techniques and provides a discussion on the utility of these methods for use in seismic hazard assessments in Australia; in particular for the NSHA18. The information supplied herein was provided to participants of the Ground-Motion Characterisation Expert Elicitation workshop, held at Geoscience Australia on 9 March 2017 (Griffin et al., 2018).
-
The 2018 National Seismic Hazard Assessment (NSHA18) aims to provide the most up-to-date and comprehensive understanding of seismic hazard in Australia. As such, NSHA18 includes a range of alternative models for characterising seismic sources and ground motions proposed by members of the Australia earthquake hazard community. The final hazard assessment is a weighted combination of alternative models. This report describes the use of a structured expert elicitation methodology (the ‘Classical Model’) to weight the alternative models and presents the complete results of this process. Seismic hazard assessments are inherently uncertain due to the long return periods of damaging earthquakes relative to the time period of human observation. This is especially the case for low-seismicity regions such as Australia. Despite this uncertainty, there is a demand for estimates of seismic hazard to underpin a range of decision making aimed at reducing the impacts of earthquakes to society. In the face of uncertainty, experts will propose alternative models for the distribution of earthquake occurrence in space, time and magnitude (i.e. seismic source characterisation), and how ground shaking is propagated through the crust (i.e. ground motion characterisation). In most cases, there is insufficient data to independently and quantitatively determine a ‘best’ model. Therefore it is unreasonable to expect, or force, experts to agree on a single consensus model. Instead, seismic hazard assessments should capture the variability in expert opinion, while allowing that not all experts are equally adept. Logic trees, with branches representing mutually exclusive models weighted by expert opinion, can be used to model this uncertainty in seismic hazard assessment. The resulting hazard assessment thereby captures the range of plausible uncertainty given current knowledge of earthquake occurrence in Australia. For the NSHA18, experts were invited to contribute peer-reviewed seismic source models for consideration, resulting in 16 seismic source models being proposed. Each of these models requires values to be assigned to uncertain parameters such as the maximum magnitude earthquake expected. Similarly, up to 20 published ground motion models were identified as being appropriate for characterising ground motions for different tectonic regions in Australia. To weight these models, 17 experts in seismic hazard assessment, representative of the collective expertise of the Australian earthquake hazard community, were invited to two workshops held at Geoscience Australia in March 2017. At these workshops, the experts each assigned weights to alternative models representing their degree of belief that a particular model is the ‘true’ model. The experts were calibrated through a series of questions that tested their knowledge of the subject and ability to assess the limits to their knowledge. These workshops resulted in calibrated weights used to parameterise the final seismic source model and ground motion model logic trees for NSHA18. Through use of a structured expert elicitation methodology these weights have been determined in a transparent and reproducible manner drawing on the full depth of expertise and experience within the Australia earthquake hazard community. Such methodologies have application to a range of uncertain problems beyond the case of seismic hazard assessment presented here.
-
People in Australia are surprised to learn that hundreds of earthquakes occur below our feet every year. The majority are too small to feel, let alone cause any damage. Despite this, we are not immune to large earthquakes.
-
High‐resolution optical satellite imagery is used to quantify vertical surface deformation associated with the intraplate 20 May 2016 Mw 6.0 Petermann Ranges earthquake, Northern Territory, Australia. The 21 ± 1‐km‐long NW trending rupture resulted from reverse motion on a northeast dipping fault. Vertical surface offsets of up to 0.7 ± 0.1m distributed across a 0.5‐to‐1‐km‐wide deformation zone are measured using the Iterative Closest Point algorithm to compare preearthquake and postearthquake digital elevation models derived from WorldView imagery. The results are validated by comparison with field‐based observations and interferometric synthetic aperture radar. The pattern of surface uplift is consistent with distributed shear above the propagating tip of a reverse fault, leading to both an emergent fault and folding proximal to the rupture. This study demonstrates the potential for quantifying modest (<1 m) vertical deformation on a reverse fault using optical satellite imagery.
-
Many mapped faults in the south-eastern highlands of New South Wales and Victoria are associated with apparently youthful topographic ranges, suggesting that active faulting may have played a role in shaping the modern landscape. This has been demonstrated to be the case for the Lake George Fault, ~25 km east of Canberra. The age of fluvial gravels displaced across the fault indicates that relief generation of approximately 250 m has occurred in the last ca. 4 Myr. This data implies a large average slip rate by stable continental region standards (~90 m/Myr assuming a 45 degree dipping fault), and begs the question of whether other faults associated with relief in the region support comparable activity rates. Preliminary results on the age of strath terraces on the Murrumbidgee River proximal to the Murrumbidgee Fault are consistent with tens of metres of fault activity in the last ca. 200 kyr. Further south, significant thicknesses of river gravels are over-thrust by basement rocks across the Tawonga Fault and Khancoban-Yellow Bog Fault. While these sediments remain undated, prominent knick-points in the longitudinal profiles of streams crossing these faults suggest Quaternary activity commensurate with that on the Lake George Fault. More than a dozen nearby faults with similar relief are uncharacterised. Recent seismic hazard assessments for large infrastructure projects concluded that the extant paleoseismic information is insufficient to meaningfully characterise the hazard relating to regional faults in the south-eastern highlands, despite the potential for large earthquakes alluded to above. While fault locations and extents remain inconsistent across scales of geologic mapping, and active fault lengths and slip rates remain largely unquantified, the same conclusion may be drawn for other scales of seismic hazard assessment.
-
The 6th Generation seismic hazard model of Canada is being developed to generate seismic design values for the 2020 National Building Code of Canada (NBCC2020). Ground-motion models (GMMs) from the Next Generation Attenuation (NGA)-West 2 and NGA-East programs are used and epistemic uncertainty in ground-motion models is captured through the use of a classical weighted logic tree framework. For the first time, seismic hazard is computed directly on primary (e.g. A-E) seismic site classes from their time-averaged shear wave velocities in the upper 30 m of the crust (VS30). This approach simplifies the way end users will determine seismic design values for a given location and site class, while having other technical advantages such as capturing epistemic uncertainty in site amplification models. It will remove the need for separate site amplification look-up tables in the building code, enabling users to simply supply their location and site class to determine seismic design values. In general, the new ground- motion models predict higher hazard in most Canadian localities due to a variable combination of changes in median ground motions, site amplification and aleatory uncertainty.
-
<div>Forecasting large earthquakes along active faults is of critical importance for seismic hazard assessment. Statistical models of recurrence intervals based on compilations of paleoseismic data provide a forecasting tool. Here we compare five models and use Bayesian model-averaging to produce time-dependent, probabilistic forecasts of large earthquakes along 93 fault segments worldwide. This approach allows better use of the measurement errors associated with paleoseismic records and accounts for the uncertainty around model choice. Our results indicate that although the majority of fault segments (65/93) in the catalogue favour a single best model, 28 benefit from a model-averaging approach. We provide earthquake rupture probabilities for the next 50 years and forecast the occurrence times of the next rupture for all the fault segments. Our findings suggest that there is no universal model for large earthquake recurrence, and an ensemble forecasting approach is desirable when dealing with paleoseismic records with few data points and large measurement errors. <b>Citation:</b> Wang, T., Griffin, J.D., Brenna, M. et al. Earthquake forecasting from paleoseismic records. <i>Nat Commun</i><b> 15</b>, 1944 (2024). https://doi.org/10.1038/s41467-024-46258-z
-
In plate boundary regions moderate to large earthquakes are often sufficiently frequent that fundamental seismic parameters such as the recurrence intervals of large earthquakes and maximum credible earthquake (Mmax) can be estimated with some degree of confidence. The same is not true for the Stable Continental Regions (SCRs) of the world. Large earthquakes are so infrequent that the data distributions upon which recurrence and Mmax estimates are based are heavily skewed towards magnitudes below Mw5.0, and so require significant extrapolation up to magnitudes for which the most damaging ground-shaking might be expected. The rarity of validating evidence from surface rupturing palaeo-earthquakes typically limits the confidence with which these extrapolated statistical parameters may be applied. Herein we present a new earthquake catalogue containing, in addition to the historic record of seismicity, 150 palaeo-earthquakes derived from 60 palaeo-earthquake features spanning the last > 100 ka of the history of the Precambrian shield and fringing extended margin of southwest Western Australia. From this combined dataset we show that Mmax in non-extended-SCR is M7.25 ± 0.1 and in extended-SCR is M7.65 ± 0.1. We also demonstrate that in the 230,000 km2 area of non-extended-SCR crust, the rate of seismic activity required to build these scarps is one tenth of the contemporary seismicity in the area, consistent with episodic or clustered models describing SCR earthquake recurrence. A dominance in the landscape of earthquake scarps reflecting multiple events suggests that the largest earthquakes are likely to occur on pre-existing faults. We expect these results might apply to most areas of non-extended-SCR worldwide.