crust
Type of resources
Keywords
Publication year
Service types
Topics
-
Continental rifting and the separation of Australia from Antarctica commenced in the Middle-Late Jurassic and progressed from west to east through successive stages of crustal extension, basement-involved syn-rift faulting and thermal subsidence until the Cenozoic. Early syn-rift faults in the Bight Basin developed during NW-SE directed extension and strike mainly NE and E-W, parallel to reactivated basement structures of Paleoproterozoic or younger age in the adjacent Gawler craton. This extension was linked to reactivation of NW-striking basement faults that predetermined not only the point of breakup along the cratonic margin but the position and trend of a major intracontinental strike-slip shear zone along which much of the early displacement between Australia and Antarctica was accommodated. Following a switch to NNE-SSW extension in the Early Cretaceous, the locus of rifting shifted eastwards into the Otway Basin where basin evolution was increasingly influenced by transtensional displacements across reactivated north-south-striking terrane boundaries of Paleozoic age in the Delamerian-Ross and Lachlan Orogens. This transtensional regime persisted until 55 Ma when there was a change to north-south rifting with concomitant development of an ocean-continent transform boundary off western Tasmania and the South Tasman Rise. This boundary follows the trace of an older Paleozoic structure optimally oriented for reactivation as a strike-slip fault during the later stages of continental breakup and is one of two major basement structures for which Antarctic equivalents are readily identified. Some ocean floor fracture zones lie directly along strike from these reactivated basement structures, pointing to a link between basement reactivation and formation of the ocean floor fabrics. Together with the two basement structures, these fabrics serve as an important first order control on palaeogeographic reconstructions of the Australian and Antarctic conjugate margins.
-
The northern Perth Basin is an under-explored part of the southwest continental margin of Australia. Parts of this basin have proven hydrocarbon potential. The basin is extensively covered by mostly 2D seismic reflection data and marine gravity and magnetic data. The seismic data helps to resolve the structural framework of the basin, but in deepwater regions, the basement-cover contact and deeper basement structure are generally not well imaged. To help overcome this limitation, integrated 3D gravity modelling was used to investigate crustal structure in onshore and offshore parts of the basin. Such modelling also relies on knowledge of crustal thickness variations, but these variations too are poorly constrained in this area. Multiple models were constructed in which the seismic data were used to fix the geometry of sedimentary layers and the fit to observed gravity was examined for various different scenarios of Moho geometry. These scenarios included: 1) a Moho defined by Airy isostatic balance, 2) a Moho based on independently-published Australia-wide gravity inversion, and 3) attempts to remove the Moho gravity effect by subtracting a long-wavelength regional trend defined by GRACE/GOCE satellite data. The modelling results suggest that the best fit to observed gravity is achieved for a model in which the thickness of the crystalline crust remains roughly constant (i.e. deeper Moho under sediment depocentres) for all but the outermost parts of the basin. This finding has implications for understanding the evolution of the Perth Basin, but remains susceptible to uncertainties in sediment thickness.
-
Crustal magnetism is predominantly caused by the abundantly distributed ferrimagnetic mineral magnetite which posses the property of spontaneous magnetisation. Such magnetisation is dependent on temperature, which if high enough, will cause magnetite minerals to lose their magnetic property of spontaneous magnetisation and become paramagnetic. This temperature, known as the Curie point isotherm, occurs at ~580oC for magnetite. As temperature increases with depth in the crust, the Curie point can be taken as the depth at which the crustal magnetism ceases to be recorded. Using power spectral analysis of aeromagnetic data, we have generated a Curie point depth map for the Olympic Dam region in South Australia, host to the world's largest iron oxide-copper-gold-uranium deposit. The map shows an approximately 55 km long by 35 km wide and 40 km deep hemispherical depression in the Curie point depth beneath Olympic Dam, from a background average of around 20 km. Olympic Dam is notable for its large iron and uranium content, and it is located in a region of unusually high heat flow (av. 73 mWm-2). With such high heat flow one would expect the Curie point depth to be shallow. The paradox at Olympic Dam is that the Curie point depth is deep, raising questions about the geothermal gradient, depth-integrated abundance of heat-producing elements, and the source of the iron. A possible solution to the paradox is to interpret the deep Curie point depth as a giant hydrothermal alteration zone, where the heat-producing elements have been scavenged and concentrated into the upper crust, along with the gold and copper. The iron must have a significant mantle source as it is measured throughout the full crustal column. As iron is electrically conductive, such an interpretation is supported by the high conductivity measured deep beneath Olympic Dam.
-
Preserved within the Glenelg River Complex of SE Australia is a sequence of metamorphosed late Neoproterozoic-early Cambrian deep marine sediments intruded by mafic rocks ranging in composition from continental tholeiites to mid-ocean ridge basalts. This sequence originated during breakup of the Rodinia supercontinent and is locally host to lenses of variably sheared and serpentinised mantle-derived peridotite (Hummocks Serpentinite) representing the deepest exposed structural levels within the metamorphic complex. Direct tectonic emplacement of these rocks from mantle depths is considered unlikely and the ultramafites are interpreted here as fragments of sub-continental lithosphere originally exhumed at the seafloor during continental breakup through processes analogous to those that produced the hyper-extended continental margins of the North Atlantic. Subsequent to burial beneath marine sediments, the exhumed ultramafic rocks and their newly acquired sedimentary cover were deformed and tectonically dismembered during arc-continent collision accompanying the early Paleozoic Delamerian Orogeny, and transported to higher structural levels in the hangingwalls of west-directed thrust faults. Thrust-hosted metasedimentary rocks yield detrital zircon populations that constrain the age of mantle exhumation and attendant continental breakup to be no later than late Neoproterozoic-earliest Cambrian. A second extensional event commencing ca. 490 Ma overprints the Delamerian-age structures; it was accompanied by granite magmatism and low pressure-high temperature metamorphism but outside the zone of magmatic intrusion failed to erase the original, albeit modified, rift geometry. This geometry originally extended southward into formerly contiguous parts of the Ross Orogen in Antarctica where mafic-ultramafic rocks are similarly hosted by a deformed continental margin sequence.
-
Paleogeographic reconstructions of the conjugate Australian and Antarctic rifted continental margins based on geological versus plate tectonic considerations are rarely, if ever, fully compatible. Possible exceptions include a recently published plate tectonic reconstruction combining ocean floor fabrics and magnetic anomalies with revised rotational poles for successive extensional events in the region that coincidently brings about a match between the Kalinjala Mylonite Zone in South Australia and Mertz Shear Zone in Antarctica (Whittaker et al., 2007). A match between these two crustal-scale shear zones has been previously proposed on isotopic and geological grounds (Di Vincenzo et al., 2007; Goodge and Fanning, 2010). However, whereas the Mertz Shear Zone marks the western limits of ca. 500 Ma magmatic activity in Antarctica (Delamerian-Ross Orogen), the Kalinjala Mylonite Zone lies well to the west of this magmatic front and is bounded either side by rocks of the Mesoarchean-Mesoproterozoic Gawler craton. An alternative geological match for the Mertz Shear Zone in Australia is the hitherto unrecognised Coorong Shear Zone in South Australia (Fig. 1), tracts of which have been intruded by gabbro and granite of Delamerian-Ross age and west of which such rocks are either completely absent or greatly reduced in volume. The north-south-trending Coorong Shear Zone lies directly along strike from the (Spencer-) George V Fracture Zone and is clearly visible in aeromagnetic images and offshore deep seismic reflection data as a steep to subvertical crustal-penetrating basement structure across which there is an abrupt change in the orientation of magnetic fabrics and sedimentary basin fault geometries. An equally conspicuous change of direction is evident in ocean floor fabrics immediately offshore, inviting speculation that the along-strike George V Fracture Zone originated through reactivation of the older Coorong Shear Zone and shares the same orientation as the original basement structure. Correlation of this basement structure with the Mertz Shear Zone leads to a reconstruction of the Australian and Antarctic continental margins in which Antarctica and the entrained Mertz Shear Zone are located farther east than some recent restorations allow (Fig. 1). These restorations commonly fail to take into account an episode of NE-SW to NNE-SSW-directed extension preserved in the sedimentary and seismic record of the neighbouring Otway Basin and which is intermediate in age between initial NW-SE directed rifting in the Bight Basin and later N-S rifting that affected all of the continental margin and produced most of the ocean floor fabrics, including all of the major oceanic fracture zones. The Coorong basement structure was briefly reactivated as a sinistral strike-slip fault during this phase of NE-SW extension, but failed to evolve into a continental transform fault as was the case farther east off the southwest coast of Tasmania. There, an analogous pre-existing north-south-trending basement structure identified as the Avoca-Sorell Shear Zone was optimally oriented for reactivation as a strike-slip faulting during north-south rifting (Gibson et al., 2011). This reactivated structure is continuous along strike with the Tasman Fracture Zone and shares many similarities with the Coorong Shear Zone, separating not only basement domains with opposing magnetic fabrics but sedimentary rift basins with differently oriented sets of normal faults. Together, these two basement structures constitute an important first order constraint on palaeogeographic reconstructions of the Australian and Antarctic margins, and serve as a critical test of future palaeogeographic reconstructions based on ocean floor fabrics and plate tectonic considerations.
-
This repository contains a static version of the data and software that accompanies the article by Stephenson et al. (2024) published in the Journal of Geophysical Research: Solid Earth. Note that the data and software repositories are up to date as of 07/03/2024. For more recent updates users are referred to the primary repositories on Github. Contents of zipped repository files includes four directories: 1. The manuscript directory `STEPHENSON_ET_AL_2024_JGR/` containing - The manuscript file (pre-print before final peer review and acceptance by the journal). - Supplementary text accompanying the manuscript. 2. The `SMV2rho` software package version `v1.0.1` for converting seismic velocity into density. 3. The `SeisCruST` database of global crustal thickness and velocity profiles. 4. The `global-residual-topography` database containing estimates of continental residual topography after correcting for isostatic effects of crustal thickness and density variations. Abstract for the article: Continental topography is dominantly controlled by a combination of crustal thickness and density variations. Nevertheless, it is clear that some additional topographic component is supported by the buoyancy structure of the underlying lithospheric and convecting mantle. Isolating these secondary sources is not straightforward, but provides valuable information about mantle dynamics. Here, we estimate and correct for the component of topographic elevation that is crustally supported to obtain residual topographic anomalies for the major continents, excluding Antarctica. Crustal thickness variations are identified by assembling a global inventory of 26 725 continental crustal thickness estimates from local seismological datasets (e.g. wide-angle/refraction surveys, calibrated reflection profiles, receiver functions). In order to convert crustal seismic velocity into density, we develop a parametrization that is based upon a database of 1 136 laboratory measurements of seismic velocity as a function of density and pressure. In this way, 4 120 new measurements of continental residual topography are obtained. Observed residual topography mostly varies between±1–2 km on wavelengths of 1 000–5 000 km. Our results are generally consistent with the pattern of residual depth anomalies observed throughout the oceanic realm, with long-wavelength free-air gravity anomalies, and with the distribution of upper mantle seismic velocity anomalies. They are also corroborated by spot measurements of emergent marine strata and by the global distribution of intraplate magmatism that is younger than 10 Ma. We infer that a significant component of residual topography is generated and maintained by a combination of lithospheric thickness variation and sub-plate mantle convection. Lithospheric composition could play an important secondary role, especially within cratonic regions.
-
There has been a long-identified need in New Zealand for a community-developed three-dimensional model of active faults that is accessible and available to all. Over the past year, work has progressed on building and parameterising such a model – the New Zealand Community Fault Model (NZ CFM). The NZ CFM will serve as a unified and foundational resource for many societally important applications such as the National Seismic Hazard Model, Resilience to Natures Challenges Earthquake and Tsunami programme, physics-based fault systems modelling, earthquake ground-motion simulations, and tsunami hazard evaluation. Version 1.0 of the NZ CFM is nearing finalisation and release. NZ CFM v1.0 provides a simplified 3D representation of New Zealand’s crustal-scale active faults (including some selected potentially active faults) compiled at a nominal scale of 1:500,000 to 1:1,000,000. NZ CFM faults are defined based on surface traces, seismicity, seismic reflection profiles, wells, and geologic cross sections. The model presently incorporates more than 800 objects (i.e., faults), which include triangulated surface representations of those faults and associated parameters such as dip and dip direction, seismogenic rupture depth, sense of movement, slip direction, and net slip rate. Presented at the 2021 New Zealand Society for Earthquake Engineering (NZSEE) Conference (https://www.nzsee.org.nz/event/2021-nzsee-conference/)
-
<p>The Roebuck Basin is considered a new and relatively untested hydrocarbon province in the central North West Shelf of Australia. Inconsistent results from drilling for hydrocarbons highlights the need to better understand the deep structures along this rifted margin that initially formed as an intra-continental, failed rift during Late Permian. Recent wells penetrated the previously unknown Lower-Middle Triassic fluvio-deltaic sedimentary package in the Bedout Sub-basin (inboard part of the Roebuck Basin), including intervals with major oil and gas discoveries. Another two wells, Anhalt 1 and Hannover South 1, only penetrated the top of this succession and they encountered volcanics in the Rowley Sub-basin (outboard part of the Roebuck Basin). Steeply dipping clinoforms observed in the seismic data in the Rowley Sub-basin have been interpreted either as a lava delta complex associated with a failed triple junction; or as a series of back-stepping, Late Permian carbonate ramps and banks, interpreted to have developed on a thermally subsiding rift flank. The implication for prospectivity between the two scenarios is significant. Geoscience Australia undertook a Triassic regional basin analyses, including potential field modelling to validate whether the two proposed models are a plausible solution. A combination of magnetic and gravity 2.5D modelling along nine key regional seismic lines, considered the distribution of potential intrabasinal volcanic rocks and the crustal structure, including Moho depth and depth to top crystalline basement. <p>New seismic interpretation correlated to recent wells, including 2D and 3D seismic reflection surveys was integrated with deep seismic reflection and refraction data resulting in an improved geometry and lithology model that was input into the potential field analyses. The results show that the combined Jurassic and Triassic successions reach up to 16 km deep in the central North West Shelf. The Lower-Middle Triassic sediment package in the Rowley Sub-basin correlates with up to 10 km of dense material (about 2.7 g/cm3 density) and contains magnetic features partially sourced from basalts at the top of the section, as intersected in Anhalt 1 and Hannover South 1. Combined with other causative sources within basement, the basalts correlate with a spatially large positive magnetic anomaly that extends north onto the Scott Plateau and into the Barcoo Sub-basin; in the offshore southwest part of the Browse Basin, where Warrabkook 1 intersected Late Jurassic volcanoclastics at its total depth. The presence of high density and high positive magnetic anomalies in the Lower-Middle Triassic and basement supports the presence of a large igneous province in this area. This interpretation in the outer Rowley Sub-basin downgrades the petroleum prospectivity in this area for this Lower-Middle Triassic interval. Petroleum prospectivity remains in the area due to the overlying sediments containing good source rocks which have been identified to have good to excellent generative potential. <p>The Lower-Middle Triassic sediment package in the adjacent northern Carnarvon Basin has been intersected only on the Lambert Shelf; encountering fluvio-deltaic sediments. In the offshore part of the northern Carnarvon Basin, the nature of this sediment package still remains enigmatic. It correlates with low density sediments (about 2.5 g/cm3 density) that include magnetic bodies on the outboard Exmouth Plateau. The basement and crust show crustal thinning with the presence of a thick layer of interpreted hyper-extended continental crust or exhumed lithospheric mantle. This crustal domain is overlain by thick onlapping Lower-Middle Triassic sediments which form a triangular shape depocentre in the inboard northern Carnarvon Basin, wrapping around the edge of the Pilbara Craton. The location of this initial thick sediment package suggests that it was controlled by the inherited thermal structure of the Late Permian-early Triassic rift architecture that is associated with some volcanics related to a large igneous province extending across the central North West Shelf. As described in the Rowley Sub-basin, the petroleum prospectivity of the northern Carnarvon Basin remains in the overlying sediments showing similar characteristics and indicating good to excellent hydrocarbon generative potential.
-
The New Caledonia Trough is a bathymetric depression 200-300 km wide, 2300 km long, and 1.5-3.5 km deep between New Caledonia and New Zealand. In and adjacent to the trough, seismic stratigraphic units, tied to wells, include: Cretaceous rift sediments in faulted basins; Late Cretaceous to Eocene pelagic drape; and ~1.5 km thick Oligocene to Quaternary trough fill that was contemporaneous with Tonga-Kermadec subduction. A positive free-air gravity anomaly of 30 mGal is spatially correlated with the axis of the trough. We model the evolution of the New Caledonia Trough as a two-stage process: (i) trough formation in response to crustal thinning (Cretaceous and/or Eocene); and (ii) post-Eocene trough-fill sedimentation. To best fit gravity data, we find that the effective elastic thickness (Te) of the lithosphere was low (5-10 km) during Phase (i) trough formation and high (20-40 km) during Phase (ii) sedimentation, though we cannot rule out a fairly constant Te of 10 km. The inferred increase in Te with time is consistent with thermal relaxation after Cretaceous rifting, but such a model is not in accord with all seismic-stratigraphic interpretations. If most of the New Caledonia Trough topography was created during Eocene inception of Tonga-Kermadec subduction, then our results place important constraints on the associated lower-crustal detachment process and suggest that failure of the lithosphere did not allow elastic stresses to propagate regionally into the over-riding plate. We conclude that the gravity field places an important constraint on geodynamic models of Tonga-Kermadec subduction initiation.
-
Interpretation of gravity and magnetic data in the vicinity of the deep seismic lines 10GA-CP1, 10GA-CP2 and 10GA-CP3, which cross the Capricorn Orogen of Western Australia. Interpretation techniques untaken include multiscale edge detection (worms), 2.5D forward modelling and unconstrained 3D inversion.