From 1 - 10 / 28
  • The values and distribution patterns of the strontium (Sr) isotope ratio 87Sr/86Sr in Earth surface materials is of use in the geological, environmental and social sciences. Ultimately, the 87Sr/86Sr ratio of any mineral or biological material reflects its value in the rock that is the parent material to the local soil and everything that lives in and on it. In Australia, there are few large-scale surveys of 87Sr/86Sr available, and here we report on a new, low-density dataset using 112 catchment outlet (floodplain) sediment samples covering 529,000 km2 of inland southeastern Australia (South Australia, New South Wales, Victoria). The coarse (<2 mm) fraction of bottom sediment samples (depth ~0.6-0.8 m) from the National Geochemical Survey of Australia were fully digested before Sr separation by chromatography and 87Sr/86Sr determination by multicollector-inductively coupled plasma-mass spectrometry. The results show a wide range of 87Sr/86Sr values from a minimum of 0.7089 to a maximum of 0.7511 (range 0.0422). The median 87Sr/86Sr (± robust standard deviation) is 0.7199 (± 0.0112), and the mean (± standard deviation) is 0.7220 (± 0.0106). The spatial patterns of the Sr isoscape observed are described and attributed to various geological sources and processes. Of note are the elevated (radiogenic) values (≥~0.7270; top quartile) contributed by (1) the Palaeozoic sedimentary country rock and (mostly felsic) igneous intrusions of the Lachlan geological region to the east of the study area; (2) the Palaeoproterozoic metamorphic rocks of the central Broken Hill region; both these sources contribute fluvial sediments into the study area; and (3) the Proterozoic to Palaeozoic rocks of the Kanmantoo, Adelaide, Gawler and Painter geological regions to the west of the area; these sources contribute radiogenic material to the region mostly by aeolian processes. Regions of low 87Sr/86Sr (≤~0.7130; bottom quartile) belong mainly to (1) a few central Murray Basin catchments; (2) some Darling Basin catchments in the northeast; and (3) a few Eromanga geological region-influenced catchments in the northwest of the study area. The new spatial dataset is publicly available through the Geoscience Australia portal (https://portal.ga.gov.au/restore/cd686f2d-c87b-41b8-8c4b-ca8af531ae7e).

  • <div>Environmental DNA (eDNA), elemental and mineralogical analyses of soil have been shown to be specific to their source material, prompting consideration of the use of dust for forensic provenancing. Dust is ubiquitous in the environment and is easily transferred to items belonging to a person of interest, making dust analysis an ideal tool in forensic casework. The advent of Next Generation Sequencing technologies means that metabarcoding of eDNA can uncover microbial, fungal, and even plant genetic fingerprints in dust particles. Combining this with elemental and mineralogical compositions offers multiple, complementary lines of evidence for tracing the origin of an unknown dust sample. This is particularly pertinent when recovering dust from a person of interest to ascertain where they may have travelled. Prior to proposing dust as a forensic trace material, however, the optimum sampling protocols and detection limits need to be established to place parameters around its utility in this context. We tested several approaches to collecting dust from different materials and determined the lowest quantity of dust that could be analysed for eDNA, geochemistry and mineralogy, whilst still yielding results capable of distinguishing between sites. We found that fungal eDNA profiles could be obtained from multiple sample types and that tape lifts were the optimum collection method for discriminating between sites. We successfully recovered both fungal and bacterial eDNA profiles down to 3&nbsp;mg of dust (the lowest tested quantity) and recovered elemental and mineralogical compositions for all tested sample quantities. We show that dust can be reliably recovered from different sample types, using different sampling techniques, and that fungal, bacterial, and elemental and mineralogical profiles, can be generated from small sample quantities, highlighting the utility of dust as a forensic provenance material.</div> <b>Citation:</b> Nicole R. Foster, Belinda Martin, Jurian Hoogewerff, Michael G. Aberle, Patrice de Caritat, Paul Roffey, Robert Edwards, Arif Malik, Priscilla Thwaites, Michelle Waycott, Jennifer Young, The utility of dust for forensic intelligence: Exploring collection methods and detection limits for environmental DNA, elemental and mineralogical analyses of dust samples, <i>Forensic Science International </i>, Volume 344, 2023, 111599, ISSN 0379-0738, https://doi.org/10.1016/j.forsciint.2023.111599. ISSN 0379-0738,

  • <div>Strontium isotopes (87Sr/86Sr) are useful in the earth sciences (e.g. recognising geological provinces, studying geological processes) as well in archaeological (e.g. informing on past human migrations), palaeontological/ecological (e.g. investigating extinct and extant taxa’s dietary range and migrations) and forensic (e.g. validating the origin of drinks and foodstuffs) sciences. Recently, Geoscience Australia and the University of Wollongong have teamed up to determine 87Sr/86Sr ratios in fluvial sediments selected mostly from the low-density National Geochemical Survey of Australia (www.ga.gov.au/ngsa), with a few additional Northern Australia Geochemical Survey infill samples. The present study targeted the northern parts of Western Australia, the Northern Territory and Queensland in Australia, north of 21.5 °S. The samples were taken mostly from a depth of ~60-80 cm depth in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse grain-size fraction (&lt;2 mm) was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release total strontium. Preliminary results demonstrate a wide range of strontium isotopic values (0.7048 &lt; 87Sr/86Sr &lt; 1.0330) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and smooth gradients), large-scale (&gt;100 km) patterns that appears to be consistent, in many places, with surface geology, regolith/soil type and/or nearby outcropping bedrock. For instance, the extensive black clay soils of the Barkly Tableland define a &gt;500 km-long northwest-southeast-trending low anomaly (87Sr/86Sr &lt; 0.7182). Where carbonate or mafic igneous rocks dominate, a low to moderate strontium isotope signature is observed. In proximity to the outcropping Proterozoic metamorphic provinces of the Tennant, McArthur, Murphy and Mount Isa geological regions, conversely, high 87Sr/86Sr values (&gt; 0.7655) are observed. A potential link between mineralisation and elevated 87Sr/86Sr values in these regions needs to be investigated in greater detail. Our results to-date indicate that incorporating soil/regolith strontium isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting strontium isoscape and model derived therefrom can also be utilised in archaeological, paleontological and ecological studies that aim to investigate past and modern animal (including humans) dietary habits and migrations. &nbsp;The new spatial dataset is publicly available through the Geoscience Australia portal https://portal.ga.gov.au/.</div>

  • <div>The ubiquitous nature of dust, along with localised chemical and biological signatures, makes it an ideal medium for provenance determination in a forensic context. Metabarcoding of dust can yield biological communities unique to the site of interest, similarly, geochemical and mineralogical analyses can uncover elements and minerals within dust than can be matched to a geographic location. Combining these analyses presents multiple lines of evidence as to the origin of collected dust samples. In this work, we investigated whether the time an item spent at a site collecting dust influenced the ability to assign provenance. We then integrated dust metabarcoding of bacterial and fungal communities into a framework amenable to forensic casework, (i.e., using calibrated log-likelihood ratios to predict the origin of dust samples) and assessed whether current soil metabarcoding databases could be utilised to predict dust origin. Furthermore, we tested whether both metabarcoding and geochemical/mineralogical analyses could be conducted on a single sample for situations where sampling is limited. We found both analyses could generate results capable of separating sites from a single swabbed sample and that the duration of time to accumulate dust did not impact site separation. We did find significant variation within sites at different sampling time periods, showing that bacterial and fungal community profiles vary over time and space – but not to the extent that they are non-discriminatory. We successfully modelled soil and dust samples for both bacterial and fungal diversity, developing calibrated log-likelihood ratio plots and used these to predict provenance for dust samples. We found that the temporal variation in community composition influenced our ability to predict dust provenance and recommend reference samples be collected as close to the sampling time as possible. Thus, our framework showed soil metabarcoding databases are capable of being used to predict dust provenance but the temporal variation in metabarcoded communities will need to be addressed to improve provenance estimates.&nbsp;</div> <b>Citation:</b> Nicole R. Foster, Duncan Taylor, Jurian Hoogewerff, Michael G. Aberle, Patrice de Caritat, Paul Roffey, Robert Edwards, Arif Malik, Michelle Waycott and Jennifer M. Young, The secret hidden in dust: Uncovering the potential to use biological and chemical properties of the airborne soil fraction to assign provenance and integrating this into forensic casework, <i>Forensic Science International: Genetics,</i> (2023) doi:https://doi.org/10.1016/j.fsigen.2023.102931

  • Major oxides provide valuable information about the composition, origin, and properties of rocks and regolith. Analysing major oxides contributes significantly to understanding the nature of geological materials and processes (i.e. physical and chemical weathering) – with potential applications in resource exploration, engineering, environmental assessments, agriculture, and other fields. Traditionally most measurements of oxide concentrations are obtained by laboratory assay, often using X-ray fluorescence, on rock or regolith samples. To expand beyond the point measurements of the geochemical data, we have used a machine learning approach to produce seamless national scale grids for each of the major oxides. This approach builds predictive models by learning relationships between the site measurements of an oxide concentration (sourced from Geoscience Australia’s OZCHEM database and selected sites from state survey databases) and a comprehensive library of covariates (features). These covariates include: terrain derivatives; climate surfaces; geological maps; gamma-ray radiometric, magnetic, and gravity grids; and satellite imagery. This approach is used to derive national predictions for 10 major oxide concentrations at the resolution of the covariates (nominally 80 m). The models include the oxides of silicon (SiO2), aluminium (Al2O3), iron (Fe2O3tot), calcium (CaO), magnesium (MgO), manganese (MnO), potassium (K2O), sodium (Na2O), titanium (TiO2), and phosphorus (P2O5). The grids of oxide concentrations provided include the median of multiple models run as the prediction, and lower and upper (5th and 95th) percentiles as measures of the prediction’s uncertainty. Higher uncertainties correlate with greater spreads of model values. Differences in the features used in the model compared with the full feature space covering the entire continent are captured in the ‘covariate shift’ map. High values in the shift model can indicate higher potential uncertainty or unreliability of the model prediction. Users therefore need to be mindful, when interpreting this dataset, of the uncertainties shown by the 5th-95th percentiles, and high values in the covariate shift map. Details of the modelling approach, model uncertainties and datasets are describe in an attached word document “Model approach uncertainties”. This work is part of Geoscience Australia’s Exploring for the Future program that provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. These data are published with the permission of the CEO, Geoscience Australia.

  • Soil is a ubiquitous material at the Earth's surface with potential to be a useful evidence class in forensic and intelligence applications. Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier Transform InfraRed spectroscopy (FTIR) and geochemical data from X-Ray Fluorescence (XRF; for total major oxides) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; for both total and aqua regia-soluble trace elements) are obtained from the survey's 268 topsoil samples (0–5 cm depth; 1 sample per km2). The simultaneous provenancing approach is underpinned by (i) the calculation of Spearman's correlation coefficients (rS) between an evidentiary sample and all the samples in the database for all variables generated by each analytical method; and (ii) the preparation of an interpolated raster grid of rS for each evidentiary sample and method resulting in a series of provenance rasters (“heat maps”). The simultaneous provenancing method is tested on the North Canberra soil survey with three “blind” samples representing simulated evidentiary samples. Performance metrics of precision and accuracy indicate that the FTIR (mineralogy) and XRF (geochemistry) analytical methods offer the most precise and accurate provenance predictions. Maximizing the number of analytes/analytical techniques is advantageous in soil provenancing. Despite acknowledged limitations, it is concluded that the empirical soil provenancing approach can play an important role in forensic and intelligence applications. <b>Citation:</b> de Caritat, P, Woods, B, Simpson, T, Nichols, C, Hoogenboom, L, Ilheo, A, et al. Forensic soil provenancing in an urban/suburban setting: A simultaneous multivariate approach. <i>J Forensic Sci</i>. 2022; 67: 927–935. https://doi.org/10.1111/1556-4029.14967

  • The National Geochemical Survey of Australia (NGSA) is Australia’s first national-scale geochemical survey. It was delivered to the public on 30 June 2011, after almost five years of stakeholder engagement, strategic planning, sample collection, preparation and analysis, quality assurance/quality control, and preliminary data analytics. The project was comprehensively documented in seven initial open-file reports and six data and map sets, followed over the next decade by more than 70 well-cited scientific publications. This review compiles the body of work and knowledge that emanated from the project to-date as an indication of the impact the NGSA had over the decade 2011-2021. The geochemical fabric of Australia as never seen before has been revealed by the NGSA. This has spurred further research and stimulated the mineral exploration industry. This paper also critically looks at operational decisions taken at project time (2007-2011) that were good and perhaps – with the benefit of hindsight – not so good, with the intention of providing experiential advice for any future large-scale geochemical survey of Australia or elsewhere. Strengths of the NGSA included stakeholder engagement, holistic approach to a national survey, involvement of other geoscience agencies, collaboration on quality assurance with international partners, and targeted promotion of results. Weaknesses included gaining successful access to all parts of the nation, and management of sample processing in laboratories. <b>Citation:</b> Patrice de Caritat; The National Geochemical Survey of Australia: review and impact. <i>Geochemistry: Exploration, Environment, Analysis </i>2022;; 22 (4): geochem2022–032. doi: https://doi.org/10.1144/geochem2022-032 This article appears in multiple journals (Lyell Collection & GeoScienceWorld)

  • <div>Alluvial sediments have long been used in geochemical surveys as their compositions are assumed to be representative of areas upstream. Overbank and floodplain sediments, in particular, are increasingly used for regional to continental-scale geochemical mapping. However, during downstream transport, sediments from heterogeneous source regions are carried away from their source regions and mixed. Consequently, using alluvial sedimentary geochemical data to generate continuous geochemical maps remains challenging. In this study we demonstrate a technique that numerically unmixes alluvial sediments to make a geochemical map of their upstream catchments. The unmixing approach uses a model that predicts the concentration of elements in downstream sediments, given a map of the drainage network and element concentrations in the source region. To unmix sedimentary chemistry, we seek the upstream geochemical map that, when mixed downstream, best fits geochemical observations downstream. To prevent overfitting we penalise the roughness of the geochemical model. To demonstrate our approach we apply it to alluvial samples gathered as part of the Northern Australia Geochemical Survey. This survey gathered samples collected over a ∼ 500,000 km2 area in northern Australia. We first validate our approach for this sample distribution with synthetic tests, which indicate that we can resolve geochemical variability at scales greater than 0.5 – 1◦ in size. We proceed to invert real geochemical data from the total digestion of fine-grained fraction of alluvial sediments. The resulting geochemical maps for two elements of potential economic interest, Cu and Nd, are evaluated in detail. We find that in both cases, our predicted downstream concentrations match well against a held-out, unseen subset of the data, as well as against data from an independent geochemical survey. By performing principal component analysis on maps generated for all 46 available elements we produce a synthesis map showing the significant geochemical domains of this part of northern Australia. This map shows strong spatial similarities to the underlying lithological map of the area. Finally, we compare the results from our approach to a geochemical map produced by kriging. We find that, unlike the method presented here, kriging generates geochemical maps that are both dampened relative to expected magnitude, as well as being spatially distorted. We argue that the unmixing approach is the most appropriate method for generating geochemical maps from regional-scale alluvial surveys.&nbsp;</div> <b>Citation:</b> Alex G. Lipp, Patrice de Caritat, Gareth G. Roberts, Geochemical mapping by unmixing alluvial sediments: An example from northern Australia, <i>Journal of Geochemical Exploration,</i> Volume 248, <b>2023</b>, 107174, ISSN 0375-6742, https://doi.org/10.1016/j.gexplo.2023.107174. (https://www.sciencedirect.com/science/article/pii/S0375674223000213)

  • <div>Strontium isotopes (87Sr/86Sr) are useful to trace processes in the Earth sciences as well as in forensic, archaeological, palaeontological, and ecological sciences. As very few large-scale Sr isoscapes exist in Australia, we have identified an opportunity to determine 87Sr/86Sr ratios on archived fluvial sediment samples from the low-density National Geochemical Survey of Australia (www.ga.gov.au/ngsa; last access: 15 December 2022). The present study targeted the northern parts of Western Australia, the Northern Territory and Queensland, north of 21.5 °S. The samples were taken mostly from a depth of ~60-80 cm in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse (< 2 mm) grain-size fraction was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release <em>total</em> Sr. The Sr was then separated by chromatography and the 87Sr/86Sr ratio determined by multicollector-inductively coupled plasma mass spectrometry. Results demonstrate a wide range of Sr isotopic values (0.7048 to 1.0330) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and smooth gradients), large-scale (> 100 km) patterns that appear to be broadly consistent with surface geology, regolith/soil type, and/or nearby outcropping bedrock. For instance, the extensive black clay soils of the Barkly Tableland define a > 500 km-long northwest-southeast-trending unradiogenic anomaly (87Sr/86Sr < 0.7182). Where sedimentary carbonate or mafic/ultramafic igneous rocks dominate, low to moderate 87Sr/86Sr values are generally recorded (medians of 0.7387 and 0.7422, respectively). In proximity to the outcropping Proterozoic metamorphic basement of the Tennant, McArthur, Murphy and Mount Isa geological regions, conversely, radiogenic 87Sr/86Sr values (> 0.7655) are observed. A potential correlation between mineralisation and elevated 87Sr/86Sr values in these regions needs to be investigated in greater detail. Our results to-date indicate that incorporating soil/regolith Sr isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting Sr isoscape and future models derived therefrom can also be utilised in forensic, archaeological, paleontological and ecological studies that aim to investigate, e.g., past and modern animal (including humans) dietary habits and migrations. The new spatial Sr isotope dataset for the northern Australia region is publicly available (de Caritat et al., 2022a; https://dx.doi.org/10.26186/147473; last access: 15 December 2022).</div> <b>Citation:</b> de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of northern Australia, <i>Earth Syst. Sci. Data</i>, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, <b>2023</b>.

  • <div>With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a digital soil mapping framework to combine data from recent geochemical surveys and environmental covariates to predict and map Li content across the 7.6 million km2 area of Australia. Soil samples were collected by the National Geochemical Survey of Australia at a total of 1315 sites, with both top (0–10 cm depth) and bottom (on average 60–80 cm depth) catchment outlet sediments sampled. We developed 50 bootstrap models using a Cubist regression tree algorithm for both depths. The spatial prediction models were validated on an independent Northern Australia Geochemical Survey dataset, showing a good prediction with an RMSE of 3.82 mg kg-1 for the top depth. The model for the bottom depth has yet to be validated. The variables of importance for the models indicated that the first three Landsat bands and gamma radiometric dose have a strong impact on Li prediction. The bootstrapped models were then used to generate digital soil Li prediction maps for both depths, which could select and delineate areas with anomalously high Li concentrations in the regolith. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.&nbsp;</div> <b>Citation:</b> Ng, W., Minasny, B., McBratney, A., de Caritat, P., and Wilford, J.: Digital soil mapping of lithium in Australia, <i>Earth Syst. Sci. Data</i>, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, <b>2023</b>.