Rock
Type of resources
Keywords
Publication year
Topics
-
The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. The initial phase of this program led by Geoscience Australia focussed on northern Australia to gather new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface. The northern Lawn Hill Platform is an intracratonic poly-phased history region of Paleoproterozoic to Mesoproterozic age consisting of mixed carbonates, siliciclastics and volcanics. It is considered a frontier basin with very little petroleum exploration to date, but with renewed interest in shale and tight gas, that may present new exploration opportunities. An understanding of the geochemistry of the sedimentary units, including the organic richness, hydrocarbon-generating potential and thermal maturity, is therefore an important characteristic needed to understand the resource potential of the region. As part of this program, Rock-Eval pyrolysis analyses were undertaken by Geoscience Australia on selected rock samples from 2 wells of the northern Lawn Hill Platform.
-
<p>In the South Nicholson region of Queensland and the Northern Territory, the Paleoproterozoic Isa Superbasin and the Mesoproterozoic South Nicholson Basin have the potential to host both conventional and unconventional petroleum systems (Gorton & Troup, 2018). The region remains poorly explored however with only 19 petroleum wells drilled in total (Carr et al., 2016). Although nine stratigraphic intervals are described as potential source rocks, data coverage is extremely limited and a large proportion of the available data is old and of poor quality. To more comprehensively characterise these organic rich source rocks, higher resolution coverages of pre-competitive geochemical data is required (Jarrett et al. 2018). <p>This report contains the total organic carbon (TOC) content and Rock-Eval pyrolysis data of 674 samples selected from twelve drill cores housed in the Geological Survey of Queensland’s Brisbane core repository including Amoco DDH 83-1, Amoco DDH 83-2, Amoco DDH 83-3, Amoco DDH 83-4, Argyle Creek 1, Armraynald 1, Burketown 1, Desert Creek 1, Egilabria 1, Egilabria 2 DW1, Egilabria 4, Morstone 1, MORSTONE DDH1. This data was generated at the Isotope and Organic Geochemistry Laboratory at Geoscience Australia as part of the Exploring for the Future program.
-
<p>The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. The four-year program led by Geoscience Australia focusses on northern Australia and parts of South Australia to gather new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface. As part of the Exploring for the Future program, this study aims to improve our understanding of the petroleum resource potential of northern Australia. As a component of this project, collaboration between the Onshore Energy Systems Branch, Geoscience Australia and the Northern Territory Geological Survey (NTGS) is designed to produce pre-competitive information to assist with the evaluation of the petroleum prospectivity of onshore Northern Territory basins. <p>Proterozoic basins of northern Australia including the McArthur Basin, the Isa Superbasin and the Isa Superbasin have the potential to host conventional oil and gas, in addition to unconventional shale gas and oil plays (Muir et al., 1980; Munson, 2014; Revie, 2016; Revie, 2017; Gorton & Troup, 2018). To date, work on the prospective petroleum systems in the McArthur Basin has focused principally on source rocks within the McArthur and Roper groups in the southern parts of the basin. However due to limited data availability, the spatial variability in source rock quality, type and thermal maturity remains poorly constrained across the region. In the South Nicholson region of Queensland and the Northern Territory, data from the Paleoproterozoic Isa Superbasin and the Mesoproterozoic South Nicholson Basin is extremely limited and a large proportion of the available data is old and of poor quality. To more comprehensively characterise these organic rich source rocks, higher resolution coverages of pre-competitive geochemical data is required (Gorton & Troup, 2018; Jarrett et al. 2018). <p>This data release contains the total organic carbon (TOC) content and Rock-Eval pyrolysis data of 314 samples selected from nine drill cores from the McArthur Basin, South Nicholson Basin and Isa Superbasin that are housed in the Northern Territory Geological Survey’s Darwin core repository. The wells include Glyde 1, Lamont Pass 3 (McArthur Basin), Brunette Downs 1, CRDD001, NTGS 00/1, NTGS 01/1, NTGS 02/1 (South Nicholson Basin), in addition to ND1 and ND2 (Isa Superbasin). This data was generated at the Isotope and Organic Geochemistry Laboratory at Geoscience Australia as part of the Exploring for the Future program. The results show that the McArthur Basin samples analysed contain source rocks with poor to fair oil and gas generative potential with variable thermal maturity from immature to early oil mature. The Isa Superbasin samples analysed have poor to good gas generative potential and the South Nicholson samples analysed have poor to excellent gas generative potential. Samples from the Walford Dolostone and the Mullera Formation are overmature and petroleum potential cannot be assessed from the results of this study. This data release provides additional information that can be used to characterise the organic richness, kerogen type and thermal maturity of source rocks in the Teena Dolostone, Barney Creek Formation and Lynott Formation of the McArthur Basin, the Walford Dolostone and Mount Les Siltstone of the Isa Superbasin, in addition to the Constance Sandstone and Mullera Formation of the South Nicholson Basin. This data is provided in preparation for future work to generate statistics quantifying the spatial distribution, quantity and quality of source rocks, providing important insights into the hydrocarbon prospectivity of northern Australian basins
-
Source rock geochemistry of the McArthur Basin, Northern Australia: Rock-Eval pyrolysis data release
As part of the Exploring for the Future Programme this study aims to improve our understanding of the petroleum resource potential of Northern Australia. As a component or this project, collaboration between the Onshore Energy Branch, Geoscience Australia and the Northern Territory Geological Survey (NTGS) is designed to produce pre-competitive information to assist with the evaluation of the petroleum prospectivity of onshore Northern Territory basins. This report characterises the organic richness, kerogen type and thermal maturity of source rocks in the Velkerri, Barney Creek, Wollogorang and McDermott formations of the McArthur Basin based on Rock-Eval pyrolysis data analysed at Geoscience Australia in the 2017 to 2018 financial year. This data is provided in preparation for future work to generate statistics quantifying the spatial distribution, quantity and quality of McArthur Basin source rocks, providing important insights into the hydrocarbon prospectivity of the basin.
-
Collection of mineral, gem, meteorite, fossil (including the Commonwealth Palaeontological Collection) and petrographic thin section specimens dating back to the early 1900s. The collection is of scientific, historic, aesthetic, and social significance. Geoscience Australia is responsible for the management and preservation of the collection, as well as facilitating access to the collection for research, and geoscience education and outreach. Over 700 specimens from the collection are displayed in our public gallery . The collection contains: • 15,000 gem, mineral and meteorite specimens from localities in Australia and across the globe. • 45,000 published palaeontological specimens contained in the Commonwealth Palaeontological Collection (CPC) mainly from Australia. • 1,000,000 unpublished fossils in a ‘Bulk Fossil’ collection. • 250,000 petrographic thin section slides. • 200 historical geoscience instruments including: cartography, geophysical, and laboratory equipment." <b>Value: </b>Specimens in the collection are derived from Geoscience Australia (GA) surveys, submissions by researchers, donations, purchases and bequests. A number of mineral specimens are held on behalf of the National Museum of Australia. <b>Scope: </b>This is a national collection that began in the early 1900s with early Commonwealth surveys collecting material across the country and British territories. The mineral specimens are mainly from across Australia, with a strong representation from major mineral deposits such as Broken Hill, and almost 40% from the rest of the world. The majority of fossils are from Australia, with a small proportion from lands historically or currently under Australian control, such as Papua New Guinea and the Australian Antarctic Territory.
-
Data in the GEOCHEM database comprises inorganic geochemical analytical data and associated metadata. Geochemical data comprises concentration data (value, error, unit of measure) measured on a range of analytical instruments, for a range of elements of the periodic table. Associated metadata includes information on analytical techniques, analytical methodology, laboratory, analysts, date of analysis, detection limits, accuracy, and precision. The GEOCHEM database also records results for reference standards. Data is specifically for rocks, soils and other unconsolidated geological material and does not include oils, gases or water analyses. Geochemical data may be total rock (i.e., whole rock analysed) or for a variety of fractions of the total rock, e.g., various non-total acid digests, mineral separates, differing size fractions. It also includes quantitative to semi-quantitative data from field measurements, such as portable x-ray fluorescence (XRF). It does not include geochemical data for individual minerals. <b>Value: </b>Geochemical data underpins much geoscientific study, and is used directly to classify, characterise and understand geological material and its formation. It has direct relevance to understanding the formation of the earth, the continents, and the processes that create and shape the surface we live on. For example, this information is used within: both discovering and the understanding of mineral deposits we depend on; the nature, health and sustainability of the soils we live and farm on; as well as providing input into a range of potential geohazards. <b>Scope: </b>The collection includes data from over 60 years of Geoscience Australia (GA) and state/territory partner regional geological projects within Australia, as well as continental-scale and regional geochemical surveys like National Geochemical Survey of Australia (NGSA) and Northern Australia Geochemical Survey (NAGS) (Exploring for the Future- EFTF). It also includes data from other countries that GA has worked with, e.g., Papua New Guinea, Antarctica, Solomon Islands and New Zealand. Explore the <b>Geoscience Australia portal - <a href="https://portal.ga.gov.au/">https://portal.ga.gov.au/</a></b>
-
A `weighted geometric median’ approach has been used to estimate the median surface reflectance of the barest state (i.e., least vegetation) observed through Landsat-8 OLI observations from 2013 to September 2018 to generate a six-band Landsat-8 Barest Earth pixel composite mosaic over the Australian continent. The bands include BLUE (0.452 - 0.512), GREEN (0.533 - 0.590), RED, (0.636 - 0.673) NIR (0.851 - 0.879), SWIR1 (1.566 - 1.651) and SWIR2 (2.107 - 2.294) wavelength regions. The weighted median approach is robust to outliers (such as cloud, shadows, saturation, corrupted pixels) and also maintains the relationship between all the spectral wavelengths in the spectra observed through time. The product reduces the influence of vegetation and allows for more direct mapping of soil and rock mineralogy. Reference: Dale Roberts, John Wilford, and Omar Ghattas (2018). Revealing the Australian Continent at its Barest, submitted.
-
An estimate of the spectra of the barest state (i.e., least vegetation) observed from imagery of the Australian continent collected by the Landsat 5, 7, and 8 satellites over a period of more than 30 years (1983 – 2018). The bands include BLUE (0.452 - 0.512), GREEN (0.533 - 0.590), RED, (0.636 - 0.673) NIR (0.851 - 0.879), SWIR1 (1.566 - 1.651) and SWIR2 (2.107 - 2.294) wavelength regions. The approach is robust to outliers (such as cloud, shadows, saturation, corrupted pixels) and also maintains the relationship between all the spectral wavelengths in the spectra observed through time. The product reduces the influence of vegetation and allows for more direct mapping of soil and rock mineralogy. This product complements the Landsat-8 Barest Earth which is based on the same algorithm but just uses Landsat8 satellite imagery from 2013-2108. Landsat-8’s OLI sensor provides improved signal-to-noise radiometric (SNR) performance quantised over a 12-bit dynamic range compared to the 8-bit dynamic range of Landsat-5 and Landsat-7 data. However the Landsat 30+ Barest Earth has a greater capacity to find the barest ground due to the greater temporal depth. Reference: Exposed Soil and Mineral Map of the Australian Continent Revealing the Land at its Barest - Dale Roberts, John Wilford and Omar Ghattas Ghattas (2019). Nature Communications, DOI: 10.1038/s41467-019-13276-1. https://www.nature.com/articles/s41467-019-13276-1
-
The Sentinel-2 Bare Earth thematic product provides the first national scale mosaic of the Australian continent to support improved mapping of soil and geology. The bare earth algorithm using all available Sentinel-2 A and Sentinel-2 B observations up to September 2020 preferentially weights bare pixels through time to significantly reduce the effect of seasonal vegetation in the imagery. The result are image pixels that are more likely to reflect the mineralogy and/or geochemistry of soil and bedrock. The algorithm uses a high-dimensional weighted geometric median approach that maintains the spectral relationships across all Sentinel-2 bands. A similar bare earth algorithm has been applied to Geoscience Australia’s deeper Landsat time series archive (please search for "Landsat barest Earth". Both bare earth products have spectral bands in the visible near infrared and shortwave infrared region of the electromagnetic spectrum. However, the main visible and near-infrared Sentinel-2 bands have a spatial resolution of 10 meters compared to 30m for the Landsat TM equivalents. The weighted median approach is robust to outliers (such as cloud, shadows, saturation, corrupted pixels) and also maintains the relationship between all the spectral wavelengths in the spectra observed through time. Not all the sentinel-2 bands have been processed - we have excluded atmospheric bands including 1, 9 and 10. The remaining bands have been re-number 1-10 and these bands correlate to the original bands in brackets below: 1 = blue (2) , 2 = green (3) , 3 = red (4), 4 = vegetation red edge (5), 5 = vegetation red edge (6), 6= vegetation red edge (7), 7 = NIR(8), 8 = Narrow NIR (8a), 9 = SWIR1 (11) and 10 = SWIR2(12). All 10 bands have been resampled to 10 meters to facilitate band integration and use in machine learning.
-
<b>Please Note:</b> The data related to this Abstract can be obtained by contacting <a href = "mailto: clientservices@ga.gov.au">Manager Client Services</a> and quoting Catalogue number 144231. The data are arranged by regions, so please download the Data Description document found in the Downloads tab to determine your area of interest. Remotely sensed datasets provide fundamental information for understanding the chemical, physical and temporal dynamics of the atmosphere, lithosphere, biosphere and hydrosphere. Satellite remote sensing has been used extensively in mapping the nature and characteristics of the terrestrial land surface, including vegetation, rock, soil and landforms, across global to local-district scales. With the exception of hyper-arid regions, mapping rock and soil from space has been problematic because of vegetation that either masks the underlying substrate or confuses the spectral signatures of geological materials (i.e. diagnostic mineral spectral features), making them difficult to resolve. As part of the Exploring for the Future program, a new barest earth Landsat mosaic of the Australian continent using time-series analysis significantly reduces the influence of vegetation and enhances mapping of soil and exposed rock from space. Here, we provide a brief background on geological remote sensing and describe a suite of enhanced images using the barest earth Landsat mosaic for mapping surface mineralogy and geochemistry. These geological enhanced images provide improved inputs for predictive modelling of soil and rock properties over the Australian continent. In one case study, use of these products instead of existing Landsat TM band data to model chromium and sodium distribution using a random forest machine learning algorithm improved model performance by 28–46%.