From 1 - 10 / 38
  • This report is the third of three reports that provide the scientific analyses and interpretations resulting from a four-year collaborative habitat mapping program undertaken within the Darwin and Bynoe Harbour region by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government Department of Environment and Natural Resources (DENR). This program was made possible through offset funds provided by the INPEX-operated Ichthys LNG Project to DENR, and co-investments from GA and AIMS.

  • <p>The Mesoproterozoic South Nicholson Basin (SNB) in northern Australia extends across an area approximately the size of Tasmania. It is flanked by the resource rich Mt Isa Orogen and McArthur Basin. Limited outcrop and a dearth of drilling has hampered understanding of the evolution of the Basin, its relationship to other tectonic elements in northern Australia and its resource potential. The lack of any identified interbedded volcanic rocks within the studied sections has led us to concentrate on an extensive SHRIMP U-Pb detrital zircon geochronology program that so far exceeds 40 samples. In addition, we have undertaken SHRIMP U-Pb geochronology of authigenic xenotime. <p>Detrital zircon U–Pb maximum depositional ages (MDA) for the South Nicholson Group (SNG) are up to 100 My younger than previously reported [1]. The new MDA for the Constance Sandstone is ~1470 Ma and is the youngest so far recorded in the SNB. Additionally, it accords with an MDA for the underlying Crow Formation of ~1483 Ma. SHRIMP U–Pb xenotime analyses of authigenic overgrowths on detrital zircons from the Constance Sandstone gave an age of ~1266 Ma. This new data brackets the deposition of the SNG to between 1470 Ma and ~1266 Ma and provides the first evidence that the SNG is broadly contemporaneous with the 1500–1320 Ma Roper Group of the McArthur Basin. Using Multidimensional Scaling of the detrital age distributions has also added an extra dimension to our evolving understanding of the development of the SNB. <p>[1] Carson (2011) Queensland Geological Record 2011/03.

  • This report is the first of three reports that provide the scientific analyses and interpretations resulting from a four-year collaborative habitat mapping program undertaken within the Darwin and Bynoe Harbour region by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government Department of Environment and Natural Resources (DENR). This 4 year program (2014-2018) aims to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline information and developing thematic habitat maps that will underpin future marine resource management decisions. This program was made possible through offset funds provided by the INPEX-operated Ichthys LNG Project to DENR, and co-investments from GA and AIMS.

  • This report is the second of three reports that provide the scientific analyses and interpretations resulting from a four-year collaborative habitat mapping program undertaken within the Darwin and Bynoe Harbour region by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government Department of Environment and Natural Resources (DENR). This program was made possible through offset funds provided by the INPEX-operated Ichthys LNG Project to DENR, and co-investments from GA and AIMS.

  • <p>The Northern Territory Geological Survey (NTGS) designed the Mount Peake-Crawford survey to provide high resolution magnetic, radiometric and elevation data in the area. It is anticipated that the data from the survey would help attract explorers into ‘greenfield’ terranes and contribute to the discovery of the next generation of major mineral and energy deposits in the Northern Territory. A total of 120,000 line km of regional data (200m line spacing) and additional infill data (100m line spacing), flown at 60m flight height were acquired during the survey between July and October 2019. The survey was managed by Geoscience Australia. <p>Various grids were produced from the Mount Peake-Crawford Airborne Magnetic and Radiometric Survey dataset and simultaneously merged into a single grid file. The final grid retains all of the information from the input data and is levelled to the national map compilations produced by Geoscience Australia. The merged grids have a cell size of 20m. <p>The following merged grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• NASVD-filtered potassium concentration grid (%). <p>• NASVD-filtered thorium concentration grid (ppm). <p>• NASVD-filtered uranium concentration grid (ppm).

  • <div>This dataset represents the second version of a compilation of borehole stratigraphic unit data on a national scale (Figure 1). It builds on the previous Australian Borehole Stratigraphic Units Compilation (ABSUC) Version 1.0 (Vizy &amp; Rollet, 2023a) with additional new or updated stratigraphic interpretation on key boreholes located in Figure 2. Its purpose is to consolidate and standardise publicly accessible information from boreholes, including those related to petroleum, stratigraphy, minerals, and water. This compilation encompasses data from states and territories, as well as less readily available borehole logs and interpretations of stratigraphy.</div><div>&nbsp;</div><div>This study was conducted as part of the National Groundwater Systems (NGS) Project within the Australian Government's Exploring for the Future (EFTF) program. Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>As our understanding of Australian groundwater systems expands across states and territories, including legacy data from the 1970s and recent studies, it becomes evident that there is significant geological complexity and spatial variability in stratigraphic and hydrostratigraphic units nationwide. Recognising this complexity, there is a need to standardise diverse datasets, including borehole location and elevation, as well as variations in depth and nomenclature of stratigraphic picks. This standardisation aims to create a consistent, continent-wide stratigraphic framework for better understanding groundwater system for effective long-term water resource management and integrated resource assessments.</div><div>&nbsp;</div><div>This continental-scale compilation consolidates borehole data from 53 sources, refining 1,117,693 formation picks to 1,010,483 unique records from 171,396 boreholes across Australia. It provides a consistent framework for interpreting various datasets, enhancing 3D aquifer geometry and connectivity. Each data source's reliability is weighted, prioritising the most confident interpretations. Geological units conform to the Australian Stratigraphic Units Database (ASUD) for efficient updates. Regular updates are necessary to accommodate evolving information. Borehole surveys and dip measurements are excluded. As a result, stratigraphic picks are not adjusted for deviation, potentially impacting true vertical depth in deviated boreholes.</div><div>&nbsp;</div><div>This dataset provides:</div><div>ABSUC_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Australian stratigraphic unit compilation dataset (ABSUC)</div><div>ABSUC_v2_TOP&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred top picks from the ABSUC_v2 dataset</div><div>ABSUC_v2_BASE&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred base picks from the ABSUC_v2 dataset</div><div>ABSUC_BOREHOLE_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ABSUC Borehole collar dataset</div><div>ASUD_2023&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of the Australia Stratigraphic Units Database (ASUD)</div><div>&nbsp;</div><div>Utilising this uniform compilation of stratigraphic units, enhancements have been made to the geological and hydrogeological surfaces of the Great Artesian Basin, Lake Eyre Basin and Centralian Superbasin. This compilation is instrumental in mapping various regional groundwater systems and other resources throughout the continent. Furthermore, it offers a standardised approach to mapping regional geology, providing a consistent foundation for comprehensive resource impact assessments.</div>

  • <div>The Exploring for the Future program (EFTF) is a $225M Federal Government-funded initiative spanning the period July 2016 to June 2024. This multi-disciplinary program involves aspects of method development and new pre-competitive data acquisition at a variety of scales, with the aim of building an integrated understanding of Australia’s mineral, energy and groundwater potential. Significant work has been undertaken across northern Australia within regional-scale projects and as part of national-scale data acquisition and mapping activities. Some of these activities have been largely completed, and have generated new data and products, while others are ongoing. A comprehensive overview of the EFTF program can be found via the program website (eftf.ga.gov.au). Here, we overview a range of activities with implications for resource exploration in the Northern Territory.</div><div><br></div>This Abstract was submitted & presented to the 2023 Annual Geoscience Exploration Seminar (AGES), Alice Springs (https://industry.nt.gov.au/news/2022/december/registrations-open-for-ages-2023)

  • <div>This Record presents data collected as part of the ongoing Northern Territory Geological Survey–Geoscience Australia SHRIMP geochronology project under the National Collaboration Framework agreement. New U-Pb SHRIMP zircon geochronological results were derived from six samples of sedimentary rocks collected from two petroleum exploration drillholes (CBM 107-001 and CBM 107-002) that intersect the Pedirka Basin in the southeastern corner of the Northern Territory.</div><div><br></div><div>Geologically, this is a region in the Simpson Desert that encompasses several superimposed intracratonic sedimentary basins, which are separated by regional unconformities extending over areas of adjoining Queensland, South Australia and New South Wales. In the southeastern corner of the Northern Territory, the Pedirka Basin is one of three stacked basins. The exposed Mesozoic Eromanga Basin overlies the late Palaeozoic to Triassic Pedirka Basin, which is largely restricted to the subsurface, and in turn overlies the Palaeozoic pericratonic Warburton Basin (Munson and Ahmad 2013).</div><div><br></div><div>As the Pedirka Basin is almost entirely concealed beneath the Eromanga Basin, our current understanding of the geology in this southeastern corner of the Northern Territory is constrained by a limited number of exploration drillholes and 2D seismic coverage (Doig 2022). The samples described herein were collected to aid in defining the chronostratigraphy and sedimentary provenance characteristics of the Pedirka Basin.</div><div><br></div><div>BIBLIOGRAPHIC REFERENCE: Jones S.L., Jarrett A.J., Verdel C.S. and Bodorkos S. 2024. Summary of results. Joint NTGS–GA geochronology project: Pedirka Basin. Northern Territory Geological Survey, Record 2024-003.</div>

  • Building on newly acquired airborne electromagnetic and seismic reflection data during the Exploring for the Future (EFTF) program, Geoscience Australia (GA) generated a cover model across the Northern Territory and Queensland, in the Tennant Creek – Mount Isa (TISA) area (Figure 1; between 13.5 and 24.5⁰ S of latitude and 131.5 and 145⁰ E of longitude) (Bonnardot et al., 2020). The cover model provides depth estimates to chronostratigraphic layers, including: Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The depth estimates are based on the interpretation, compilation and integration of borehole, solid geology, reflection seismic, and airborne electromagnetic data, as well as depth to magnetic source estimates. These depth estimates in metres below the surface (relative to the Australian Height Datum) are consistently stored as points in the Estimates of Geophysical and Geological Surfaces (EGGS) database (Matthews et al., 2020). The data points compiled in this data package were extracted from the EGGS database. Preferred depth estimates were selected to ensure regional data consistency and aid the gridding. Two sets of cover depth surfaces (Bonnardot et al., 2020) were generated using different approaches to map megasequence boundaries associated with the Era unconformities: 1) Standard interpolation using a minimum-curvature gridding algorithm that provides minimum misfit where data points exist, and 2) Machine learning approach (Uncover-ML, Wilford et al., 2020) that allows to learn about relationships between datasets and therefore can provide better depth estimates in areas of sparse data points distribution and assess uncertainties. This data package includes the depth estimates data points compiled and used for gridding each surface, for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic (Figure 1). To provide indicative trends between the depth data points, regional interpolated depth surface grids are also provided for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The grids were generated with a standard interpolation algorithm, i.e. minimum-curvature interpolation method. Refined gridding method will be necessary to take into account uncertainties between the various datasets and variable distances between the points. These surfaces provide a framework to assess the depth and possible spatial extent of resources, including basin-hosted mineral resources, basement-hosted mineral resources, hydrocarbons and groundwater, as well as an input to economic models of the viability of potential resource development.

  • This service provides Estimates of Geological and Geophysical Surfaces (EGGS). The data comes from cover thickness models based on magnetic, airborne electromagnetic and borehole measurements of the depth of stratigraphic and chronostratigraphic surfaces and boundaries.