Inorganic Geochemistry
Type of resources
Keywords
Publication year
Service types
Topics
-
<b>IMPORTANT NOTICE:</b> This web service has been deprecated. The Hydrochemistry Service OGC service at https://services.ga.gov.au/gis/hydrogeochemistry/ows should now be used for accessing Geoscience Australia hydrochemistry analyses data. This is an Open Geospatial Consortium (OGC) web service providing access to hydrochemistry data (groundwater analyses) obtained from water samples collected from Australian water bores.
-
<div>Geochemistry of soils, stream sediments, and overbank sediments, plays an important part in informing geochemical environmental baselines, mineral prospectivity, and environmental management practices. Australia has a large number of such surveys, but they are spatially isolated and often used in isolation. First released in 2020, the Levelled Geochemical Baseline of Australia focused on levelling such surveys across the North Australian Craton, so that they could be used as a seamless dataset. This data release acts as an update to the Levelled Geochemical Baseline of Australia by changing the focus to national scale and incorporating recently reanalysed legacy samples.</div><div><br></div><div>This work was undertaken as part of the Exploring for the Future program, an eight-year program by the Australian government. The Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, was an eight year, $225m investment by the Australian Government.</div><div><br></div><div><br></div><div><br></div><div><br></div>
-
<div>This report contains new whole-rock and isotope (Pb and Sr) geochemical data, associated sample metadata, an assessment of the data’s quality assurance, for 76 samples collected from the Georgina Basin of the East Tennant National Drilling Initiative (NDI) in 2021. The data can be downloaded via the Geoscience Australia EFTF portal (https://portal.ga.gov.au/persona/eftf) or in the files attached with this record (http://pid.geoscience.gov.au/dataset/ga/148954).</div><div><br></div><div>This new geochemistry data release builds on the success of the East Tennant NDI, addressing the data-gap in earlier geochemical sampling of these holes, by providing whole-rock geochemistry (and Pb+Sr isotopes) for the Georgina Basin cover sequence. Improved geochemical characterisation of Georgina Basin geology is valuable from both a hydrogeological and mineral systems perspective. The Georgina Basin extends across much of the Northern Territory and into western Queensland, comprised of Cryogenian to Devonian sediment packages.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div>
-
The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset (<a href="http://dx.doi.org/10.11636/Record.2011.020">http://dx.doi.org/10.11636/Record.2011.020</a>). The present dataset provides additional geochemical data for Li, Be, Cs, and Rb acquired as part of the Australian Government-funded Exploring for the Future (EFTF) program and in support of the Australian Government’s 2023-2030 Critical Minerals Strategy. The dataset fills a knowledge gap about Li distribution in Australia over areas dominated by transported regolith. The main ‘total’ element analysis method deployed for NGSA was based on making a fused bead using lithium-borate flux for XRF then ICP-MS analysis. Consequently, the samples could not be meaningfully analysed for Li. All 1315 NGSA milled coarse-fraction (<2 mm) top (“TOS”) catchment outlet sediment samples, taken from 0 to 10 cm depth in floodplain landforms, were analysed in the current project following the digestion method that provides near-total concentrations of Li, Be, Cs, and Rb. The samples were analysed by the commercial laboratory analysis service provider Bureau Veritas in Perth using low-level mixed acid (a mixture of nitric, perchloric and hydrofluoric acids) digestion with elements determined by ICP-MS (Bureau Veritas methods MA110 and MA112). The data are reported in the same format as the NGSA dataset, allowing for seamless integration with previously released NGSA data. Further details on the QA/QC procedures as well as data interpretation will be reported elsewhere. This data release also includes four continental-scale geochemical maps for Li, Be, Cs, and Rb built from these analytical data. This dataset, in conjunction with previous data published by NGSA, will be of use to mineral exploration and prospectivity modelling around Australia by providing geochemical baselines for Li, Be, Cs, and Rb, as well as identifying regions of anomalism. Additionally, these data also have relevance to other applications in earth and environmental sciences.
-
This report presents the results of chemostratigraphic analyses for samples of the Waukarlycarly 1 deep stratigraphic well drilled in in the Waukarlycarly Embayment of the Canning Basin. The drilling of the well was funded by Geoscience Australia’s Exploring for the Future initiative to improve the understanding of the sub-surface geology of this underexplored region of the southern Canning Basin. The well was drilled in partnership with Geological Survey of Western Australia (GSWA) as project operator. Waukarlycarly 1 reached a total depth (TD) of 2680.53 m at the end of November 2019 and was continuously cored from 580 mRT to TD. The work presented in this report constitutes part of the post-well data acquisition. An elemental and isotope chemostratigraphic study was carried out on 100 samples of the well to enable stratigraphic correlations to be made across the Canning Basin within the Ordovician section known to host source rocks. Nine chemostratigraphically distinct sedimentary packages are identified in the Waukarlycarly 1 well and five major chemical boundaries that may relate to unconformities, hiatal surfaces or sediment provenance changes are identified. The Ordovician sections in Waukarlycarly 1 have different chemical signals in comparison to those in other regional wells, suggestive of a different provenance for the origin of the sediments in the Waukarlycarly Embayment compared to the Kidson Sub-basin (Nicolay 1) and Broome Platform (Olympic 1).
-
Geoscience Australia and its predecessors have analysed hydrochemistry of water sampled from boreholes (both pore water and groundwater), surface features, and rainwater. Sampling was undertaken during drilling or monitoring projects, and this dataset represents a significant subset of stored analyses. Water chemistry including isotopic data is essential to better understand groundwater origins, ages and dynamics, processes such as recharge and inter-aquifer connectivity and for informing conceptual and numerical groundwater models. This GA dataset underpins a nationally consistent data delivery tool and web-based mapping to visualise, analyse and download groundwater chemistry and environmental isotope data. This dataset is a spatially-enabled groundwater hydrochemistry database based on hydrochemistry data from projects completed in Geoscience Australia. The database includes information on physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, nutrients, pesticides, isotopes and organic chemicals. Basic calculations for piper plots colours are derived from Peeters, 2013 - A Background Color Scheme for Piper Plots to Spatially Visualize Hydrochemical Patterns - Groundwater, Volume 52(1) <https://doi.org/10.1111/gwat.12118>. Upon loading the data to the database, all hydrochemistry data are assessed for reliability using Quality Assurance/Quality Control procedures and all datasets were standardised. This data is made accessible with open geospatial consortium (OGC) web services and is discoverable via the Geoscience Australia Portal (<a href="https://portal.ga.gov.au/">https://portal.ga.gov.au/</a>). This dataset is published with the permission of the CEO, Geoscience Australia.
-
<div>As part of Geoscience Australia’s Exploring for the Future program, the Curnamona Geochemistry project is producing a comprehensive compilation of geochemical data from the Broken Hill region, encompassing rock, regolith and groundwater. As part of these efforts, geochemical data has been compiled, cleaned and standardised to enable more seamless interpretation and exploration of geochemical anomalies. This project improves the quality, accessibility and volume of geochemical data across the Curnamona region and supports our ongoing efforts to define regional geochemical baselines.</div> This presentation was given to the 2022 Geological Survey of South Australia (GSSA) Discovery Day 1 December (https://www.energymining.sa.gov.au/home/events-and-initiatives/discovery-day)
-
<b>Legacy service retired 29/11/2022</b> This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data conforming to the GeoSciML version 4.0 specification. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.
-
<b>Legacy service Retired 29/11/2022 IMPORTANT NOTICE: </b>This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data. This web service is intended to complement the borehole GeoSciML-Portrayal v4.0 web service, providing access to the data in a simple, non-standardised structure. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.
-
<b>Legacy service retired 29/11/2022 IMPORTANT NOTICE:</b> This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data. This web service is intended to complement the borehole GeoSciML-Portrayal v4.0 web service, providing access to the data in a simple, non-standardised structure. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.