Critical Minerals
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This map shows the locations and status, as at 31 December 2021, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future. The critical mineral deposits on this map may not be comprehensive for all commodities. For the purposes of this map, critical minerals are defined as minerals and elements (solid and gaseous) that are vital for modern technology and whose supply may be at risk of disruption. The Australian critical minerals list comprises aluminium (high-purity alumina), antimony, beryllium, bismuth, chromium, cobalt, gallium, germanium, graphite, hafnium, helium, indium, lithium, magnesium, niobium, platinum group elements, rare earth elements, rhenium, scandium, silicon (high-purity silica), tantalum, titanium, tungsten, vanadium and zirconium. These commodities are coloured by mineral groupings on the map.
-
<div>Airborne electromagnetics surveys are at the forefront of addressing the challenge of exploration undercover. They have been essential in the regional mapping programmes to build Australia's resource potential inventory and provide information about the subsurface. In collaboration with state and territory geological surveys, Geoscience Australia (GA) leads a national initiative to acquire AEM data across Australia at 20 km line spacing, as a component of the Australian government Exploring for The Future (EFTF) program. Regional models of subsurface electrical conductivity show new undercover geological features that could host critical mineral deposits and groundwater resources. The models enable us to map potential alteration and structural zones and support environmental and land management studies. Several features observed in the AEM models have also provided insights into possible salt distribution analysed for its hydrogen storage potential. The AusAEM programme is rapidly covering areas with regional AEM transects at a scale never previously attempted. The programme's success leans on the high-resolution, non-invasive nature of the method and its ability to derive subsurface electrical conductivity in three dimensions – made possible by GA's implementation of modern high-performance computing algorithms. The programme is increasingly acquiring more AEM data, processing it, and working towards full national coverage.</div> This Abstract was submitted/presented to the 2023 Australian Exploration Geoscience Conference 13-18 Mar (https://2023.aegc.com.au/)
-
<div>High purity quartz (HPQ) is the only naturally occurring and economically viable source for the production of silicon. Silicon is a critical mineral, and a key component in modern technologies such as semiconductors and photovoltaic cells. Critical minerals support the move towards a greater reliance on electrification, renewable energy sources and economic security. The global transition to net zero carbon emissions means there is a growing need for new discoveries of HPQ to supply the silicon production chain. High purity quartz deposits are identified in a multitude of geological settings, including pegmatites, hydrothermal veins, sedimentary accumulations and quartzite; however, deposits of sufficient volume and quality are rare. Quartz is abundant throughout Australia, but the exploration and discovery of HPQ occurrences is notably under-reported, making assessment of the HPQ potential in Australia extremely difficult. This paper presents a much-needed summary of the state of the HPQ industry, exploration and deposit styles in Australia. <b>Citation:</b> Jennings, A., Senior, A., Guerin, K., Main, P., & Walsh, J. (2024). A review of high-purity quartz for silicon production in Australia. <i>Australian Journal of Earth Sciences</i>, 1–13. https://doi.org/10.1080/08120099.2024.2362296
-
A review of mineral exploration trends, activities and discoveries in Australia in 2023.
-
This web map service provides visualisations of datasets prepared for the Technology Investment Roadmap Data Portal. The service has been developed using various mineral deposit, mine location and industrial plant location datasets sourced from the Australia’s Identified Mineral Resources (2019), produced by Geoscience Australia (http://dx.doi.org/10.11636/1327-1466.2018)
-
This web map service provides visualisations of datasets prepared for the Technology Investment Roadmap Data Portal. The service has been developed using various mineral deposit, mine location and industrial plant location datasets sourced from the Australia’s Identified Mineral Resources (2019), produced by Geoscience Australia (http://dx.doi.org/10.11636/1327-1466.2018)
-
This web service delivers data from an aggregation of sources, including several Geoscience Australia databases (provinces (PROVS), mineral resources (OZMIN), energy systems (AERA, ENERGY_SYSTEMS) and water (HYDROGEOLOGY). Information is grouped based on a modified version of the Australian Bureau of Statistics (ABS) 2021 Indigenous Regions (IREG). Data covers population centres, top industries, a regional summary, groundwater resources and uses, energy production and potential across six sources and two energy storage options. Mineral production and potential covers 36 commodities that are grouped into 13 groups.
-
<div>This guide and template details data requirements for submission of mineral deposit geochemical data to the Critical Minerals in Ores (CMiO) database, hosted by Geoscience Australia, in partnership with the United States Geological Survey and the Geological Survey of Canada. The CMiO database is designed to capture multielement geochemical data from a wide variety of critical mineral-bearing deposits around the world. Samples included within this database must be well-characterized and come from localities that have been sufficiently studied to have a reasonable constraint on their deposit type and environment of formation. As such, only samples analysed by modern geochemical methods, and with certain minimum metadata attribution, can be accepted. Data that is submitted to the CMiO database will also be published via the Geoscience Australia Portal (portal.ga.gov.au) and Critical Minerals Mapping Initiative Portal (https://portal.ga.gov.au/persona/cmmi). </div><div><br></div>
-
Although critical minerals (CMs) are currently produced from existing mines, their distributions in many mineral systems are, in many cases, poorly known, raising the possibility that CMs are not fully recovered from some ores. The Critical Minerals in Ores (CMiO) database, compiled by Geoscience Australia, United States Geological Survey, Geological Survey of Canada, and Geological Survey of Queensland as part of the Critical Minerals Mapping Initiative, contains high-quality geochemical data from global ore deposits classified using a common framework, enabling global comparison. Using CMiO and other data, we have undertaken preliminary investigations on distributions of CMs in mineral systems including porphyry Cu (PCu), iron oxide-Cu-Au (IOCG), iron oxide-apatite (IOA), rare earth element (REE), and Zn-dominated systems. The PCu systems are enriched in Re, Pt, Pd, Se, and Te relative to the continental crust. At the Pebble (USA) PCu deposit, Re and Se are enriched in Cu ore zones; whereas Te is enriched immediately outside these zones. Although generally not recovered, alkalic PCu deposits (e.g., Galore Creek, Canada; Cadia, Australia) can be enriched in Pd and Pt. Cobalt and some REEs occur in IOCG systems, with Co enriched in magnetite-dominant IOCG systems (e.g., Ernest Henry, Australia; Kwyjibo, Canada), and REEs enriched in IOA (e.g., Pea Ridge, USA) and hematite-dominant IOCG systems (e.g., Olympic Dam, Australia). The enrichment of individual REEs depends strongly on mineral system type. In magmatic and metasomatic systems, light REEs (Ce to Sm) and Y are enriched in hematite-rich IOCG, IOA and carbonatite (e.g., Saint-Honoré, Canada) deposits, whereas heavy REEs (Eu to Lu) are enriched in deposits associated with peralkaline magmatism (e.g., Strange Lake, Canada). Unconformity-related REE (e.g., Maw, Canada; Wolverine, Australia) and ionic clay (e.g., Koopamurra, Australia) deposits also tend to be heavy REE-rich, whereas shale-hosted (e.g., SBH, Canada) and phosphorite (e.g., Ardmore, Australia) deposits can be enriched in heavy and/or light REEs. Zinc deposits are important sources of Ga, Ge, and In. Assessment of the distribution of these CMs in Zn deposits suggest that Ge is concentrated in deposits formed from low temperature, oxidized fluids (Mississippi Valley-type: Tres Marias, Mexico; sediment-hosted massive sulfides: Red Dog, USA), whereas In is enriched in deposits formed from higher temperature, reduced fluids (volcanic-hosted massive sulfide: Kidd Creek, Canada; skarn: Isabel, Australia). These examples demonstrate the utility of the CMiO and other datasets for characterizing CMs distribution in individual ore deposit and predicting CMs potentials of mineral systems. This abstract was presented at the Joint Annual Meeting of the Geological Association of Canada (GAC), Mineralogical Association of Canada (MAC) and Society for Geology Applied to Mineral Deposits, Sudbury, Canada May 2023
-
<div>The Proterozoic alkaline and related igneous rocks of Australia is a surface geology compilation of alkaline and related igneous rocks of Proterozoic age in Australia. This dataset is one of five datasets, with compilations for Archean, Paleozoic, Mesozoic and Cenozoic alkaline and related igneous rocks already released.</div><div><br></div><div>Geological units are represented as polygon and point geometries and, are attributed with information that includes, but is not limited to, stratigraphic nomenclature and hierarchy, age, lithology, composition, proportion of alkaline rocks, body morphology, unit expression, emplacement type, presence of mantle xenoliths and diamonds, and primary data source. Source data for the geological unit polygons provided in Data Quality LINEAGE. Geological units are grouped into informal geographic “alkaline provinces”, which are represented as polygon geometries, and attributed with information similar to that provided for the geological units.</div>