silicon
Type of resources
Keywords
Publication year
Topics
-
<div>Critical minerals are the minerals and elements essential for modern technologies, economies and national security. However, the supply chains of these minerals may be vulnerable to disruption thereby making the study of these minerals, from source to product, of primary importance. </div><div><br></div><div>The global transition to net-zero emissions is driving accelerated consumption of critical minerals, particularly driven by the increase in demand for technologies such as solar photovoltaics (PV) and semiconductors (Department of Industry, Science and Resources [DISR], 2022; 2023). In parallel, the phasing out of, for example, traditional machinery and manufacturing processes reliant on hydrocarbon resources (Ali et al., 2017; Bruce et al., 2021; International Energy Agency [IEA], 2021; 2023; Skirrow et al., 2013) is further adding to the global demand. High Purity Quartz (HPQ) forms just one of these critical minerals, and is the primary raw material for the production of High Purity Silica (HPS) and Silicon (Si) for use in products ranging from solar PVs to semiconductors. </div><div><br></div><div>The current list of minerals classified as critical is now up to 31 (Department of Industry, Science and Resources [DISR], 2022; 2023). This diversity of critical minerals is also promoting a new focus on the exploration for i) new styles of mineralisation that might host sufficient volumes of critical minerals, and ii) a re-examination of existing minerals systems knowledge in order to help mineral explorers make new discoveries to help support the increasing demand. </div><div><br></div><div>At present, the main global suppliers of HPQ are the United States, Canada, Norway, Brazil, Russia and India (Pan et al., 2022). In Australia, there has been a paucity of exploration and development of HPQ mineral deposits and, despite the potential that Australia holds for the exploration and discovery of potentially significant HPQ occurrences, Simcoa Operations Pty Ltd. (Figure 1) represents the only operator currently mining HPQ, and the only manufacturer of high purity silicon in Australia (Simcoa, 2020). </div><div><br></div><div>Australia is well-positioned to incentivise the exploration, discovery and supply of raw materials, and significantly expand onshore silicon production capacity (PricewaterhouseCoopers, 2022). Research presented here highlights the opportunity that Australia has in making a positive contribution to meeting the global demand for HPQ required for high-technology applications and the transition to a net zero economy. </div><div><br></div>Abstract presented at the 2024 Annual Geoscience Exploration Seminar (AGES)
-
High-purity quartz (HPQ) is the only naturally occurring and economically viable source for the production of silicon. Silicon is a critical mineral, and a key component in modern technologies such as semiconductors and photovoltaic cells. Critical minerals support the move towards a greater reliance on electrification, renewable energy sources and economic security. The global transition to net zero carbon emissions means there is a growing need for new discoveries of HPQ to supply the silicon production chain. HPQ deposits are identified in a multitude of geological settings, including pegmatites, hydrothermal veins, sedimentary accumulations and quartzite; however, deposits of sufficient volume and quality are rare. Quartz is abundant throughout Australia, but the exploration and discovery of HPQ occurrences are notably under-reported, making assessment of the HPQ potential in Australia extremely difficult. This paper presents a much-needed summary of the state of the HPQ industry, exploration and deposit styles in Australia. KEY POINTS: 1. High-purity quartz (HPQ) is a key material for the manufacture of photovoltaic cells, semiconductors and other high-technology applications. 2. HPQ can be recovered from a variety of different source rocks in a range of geological settings. 3. Currently, the HPQ industry in Australia is under-utilised for high-technology applications, and historical exploration and mining records are under-reported and opaque. 4. This review presents an outline of the characteristics, processing requirements and end uses of HPQ, and a summary of the operations, deposits, exploration targets and known occurrences of HPQ in Australia. <b>Citation:</b> Jennings, A., Senior, A., Guerin, K., Main, P., & Walsh, J. (2024). A review of high-purity quartz for silicon production in Australia. <i>Australian Journal of Earth Sciences</i>, 1–13. https://doi.org/10.1080/08120099.2024.2362296
-
<div>High purity quartz (HPQ) is the only naturally occurring and economically viable source for the production of silicon. Silicon is a critical mineral, and a key component in modern technologies such as semiconductors and photovoltaic cells. Critical minerals support the move towards a greater reliance on electrification, renewable energy sources and economic security. The global transition to net zero carbon emissions means there is a growing need for new discoveries of HPQ to supply the silicon production chain. High purity quartz deposits are identified in a multitude of geological settings, including pegmatites, hydrothermal veins, sedimentary accumulations and quartzite; however, deposits of sufficient volume and quality are rare. Quartz is abundant throughout Australia, but the exploration and discovery of HPQ occurrences is notably under-reported, making assessment of the HPQ potential in Australia extremely difficult. This paper presents a much-needed summary of the state of the HPQ industry, exploration and deposit styles in Australia. <b>Citation:</b> Jennings, A., Senior, A., Guerin, K., Main, P., & Walsh, J. (2024). A review of high-purity quartz for silicon production in Australia. <i>Australian Journal of Earth Sciences</i>, 1–13. https://doi.org/10.1080/08120099.2024.2362296