Authors / CoAuthors
Standing, J. | Dentith, M. | Clark, D.
Abstract
Seismicity in the intraplate southwest of Western Australia is poorly understood, despite evidence for potentially damaging earthquakes of magnitude>M6. Identifying stress-focusing geological structures near significant earthquake sequences assists in understanding why these earthquakes occur in seemingly random locations across a region of more than 250 000 km2. On 16 September 2018, an ML5.7 earthquake occurred near Lake Muir in the southwest of Western Australia and was followed by an ML5.4 aftershock. The main earthquake formed a mainly northtrending fault scarp ~5 km in length and with a maximum vertical displacement of ~40 cm. The main event was followed by a series of aftershocks, one of which had a magnitude of ML5.4. Using high-resolution aeromagnetic data, we analyse bedrock geology in a wide area surrounding the new scarp and map a series of major east–west-trending faults segmenting eight distinct geological domains, as well as a network of less prominent northwest-trending faults, one of which aligns with the southern segment of the scarp. Surface faulting, surface deformation and earthquake focal mechanism studies suggest movements on north- and northeast-trending structures. The main shock, the aftershocks, surface faulting and changes in InSAR-derived surface elevation all occur in a region bounded to the south by a prominent northwest-trending fault and to the north by a west-northwest-trending domain-bounding structure. Thus, we interpret the north-trending thrust fault associated with the main Lake Muir event as due to local stress concentration of the regional east–west stress field at the intersection of these structures. Further, we propose that a particularly large west-northwest-trending structure may be broadly focusing stress in the Lake Muir area. These findings encourage similar studies to be undertaken in other areas of Australia’s southwest to further the current understanding of seismic release in the region. <b>Citation: </b>S. Standen, M. Dentith & D. Clark (2021) A geophysical investigation of the 2018 Lake Muir earthquake sequence: reactivated Precambrian structures controlling modern seismicity,<i>Australian Journal of Earth Sciences</i>, 68:5, 717-730, DOI: 10.1080/08120099.2021.1848924
Product Type
document
eCat Id
145489
Contact for the resource
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Resource provider
Point of contact
- Contact instructions
- Place and Communities
Keywords
- theme.ANZRC Fields of Research.rdf
-
- EARTH SCIENCESNatural Hazards
- ( Theme )
-
- Earthquake Hazard
-
- intraplate
-
- seismicity
-
- neotectonics
-
- stress concentrator
-
- Lake Muir
-
- reactivation
-
- aeromagnetic interpretation
-
- South West seismic zone
-
- earthquakes
-
- Published_External
Publication Date
2023-11-01T22:23:37
Creation Date
Security Constraints
Legal Constraints
Status
completed
Purpose
Journal article
Maintenance Information
notPlanned
Topic Category
geoscientificInformation
Series Information
Australian Journal of Earth Sciences Volume 68, Issue 5, 2021 717-730
Lineage
Article submitted to the Australia Journal of Earth Sciences
Parent Information
Extents
[-44.00, -9.00, 112.00, 154.00]
Reference System
Spatial Resolution
Service Information
Associations
Source Information