Authors / CoAuthors
Budd, A.R. | Holgate, F.L. | Gerner, E. | Ayling, B.F.
Abstract
Geoscience Australia's Geothermal Energy Project is part of the Energy Security Initiative announced by the Prime Minister in August 2006. Geoscience Australia received $58.9 million over five years to implement the Onshore Energy Security Program by acquiring new data to attract investment in exploration for onshore petroleum, geothermal, uranium and thorium energy sources. The Program will acquire national-scale geophysical and geochemical data, including seismic, gravity, heat flow, radiometric, magneto-telluric and airborne electromagnetic data in collaboration with the state and Northern Territory governments under the National Geoscience Agreement. Formulating the Geothermal Energy Project The key geological ingredients of the "hot rock" geothermal model are high heat-producing granites overlain by thick accumulations of low thermal-conductivity sediments. The decay of low concentrations of radiogenic elements (mostly uranium, thorium and potassium) over millions of years produces heat in the granite. This heat may be trapped at depth within the crust by a sedimentary cover that lies above the granite like a blanket. Where temperatures are high, water circulating through the hot rocks can be used to generate electricity. At lower temperatures, the heat can be used for indirect use applications, such as space and water heating. By raising awareness of Australia's geothermal potential among decision-makers and the general public, the Geothermal Energy Project aims to support development of a geothermal energy industry by encouraging investor confidence. Extensive consultation with state and Northern Territory geological surveys and geothermal exploration companies has identified a list of key impediments faced by geothermal explorers. The project aims to reduce those impediments through geoscience input. The greatest identified geoscience need is for a better understanding of the distribution of temperature in the continent's upper crust. Two existing datasets the Austherm05 map of temperature at five kilometres depth, and a database of heat flow measurements suffer from having too few data points, compounded by poor distribution. Geoscience Australia aims to provide additional information for both datasets. A third way to predict heat distribution is to use geological modelling of high heat-producing granite locations and overlying low thermal-conductivity sediments. Other geoscience inputs to be developed to improve discovery rates and reduce risk for explorers include: -a comprehensive and accessible geothermal geoscience information system -an improved understanding of the stress state of the Australian crust -increased access to seismic monitors during reservoir stimulation -a reserve and resource definition scheme.
Product Type
nonGeographicDataset
eCat Id
65369
Contact for the resource
Custodian
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- GA PublicationAUSGeo News Article
- ( Theme )
-
- Hot Rocks
- ( Theme )
-
- geothermal
-
- AU
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2007-08-24T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
[-44.0, -10.0, 112.0, 154.0]
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.