Wednesday Seminar
Type of resources
Keywords
Publication year
Topics
-
Australia’s marine jurisdiction covers over 10 million square kilometres, and we estimate that only 25% of its seafloor has been mapped to the adequate resolution required to support the sustainable development and management of our marine estate. Considering that seabed mapping underpins most aspects of ocean sciences and engineering, and contributes strongly to Australia’s economic, environmental and social values, it is critical that we address this fundamental knowledge gap. AusSeabed was founded three years ago—a cross sector collaborative national program aimed at coordinating ocean mapping efforts to maximise benefits to stakeholders. AusSeabed is working to address many challenges surrounding efficient data acquisition, quality assurance, processing and delivery to various end-users with an aim to eliminate duplication of effort and improve data quality and consistency across sectors. A fundamental component of the AusSeabed program is the design and development of a federated, cloud-based, open-source platform to address the whole supply chain from data acquisition to delivery. Importantly, this work is enabling seamless collation of seabed mapping datasets and their integration with other marine data types from a variety of previously isolated and inaccessible holdings. Strong community commitment and a powerful resonance with stakeholders have driven rapid program growth and are a testament to the value of deliberate and effective collaboration for national benefit. This presentation will give an overview of AusSeabed’s current progress, highlights and forward plan.
-
In recent years, the application of passive seismic imaging techniques has gained significant traction in the industry and national programs, despite its long-standing utilization in academia. During this talk, we will highlight several innovative techniques that our team has developed and successfully implemented in a scalable and efficient manner. These techniques have proven instrumental in identifying fundamental structures within the Earth's subsurface, providing valuable insights previously untapped by conventional methods. Join us as we delve into the transformative potential of passive seismic imaging and its emerging role in advancing our understanding of Earth's 3D structure.
-
The magnetotellurics (MT) method maps the electrical conductivity/resistivity structure of the subsurface, which provides crucial information for mineral exploration. Geoscience Australia has actively applied the method to provide multiscale world-leading datasets to improve the understanding of geology and resource potential. We demonstrate the value of scaled MT data acquisition starting from mapping large-scale conductivity structures in the lithosphere utilising long-period MT datasets through to the resolution of finer scale structures in the crust suitable for camp scale targeting. Integration of data from multiscale surveys provides an effective way to narrow the search space and to identify ‘targets’ of mineral potential in covered terranes. Our work has helped to increase explorers’ investment confidence for new mineral discoveries in greenfield regions.
-
The year 2020 has, for many people, seemed apocalyptic: the unprecedented fires of the summer, damaging storms, locust plagues, the global pandemic and rising geopolitical tensions. The Australian resources sector offers hope for combating war, pestilence, famine and death by providing the raw materials, including critical minerals, for making modern technologies and developing new ones. We use minerals for renewable energy, defence capability, medical diagnostics and treatment, transport, communications, entertainment and agriculture. The Australian Government has assessed the nation's minerals inventory since 1975, recognising that understanding our identified resource potential is the first step to realising the responsible production of the minerals needed for longer, healthier and wealthier human life across the world. In 2020 and beyond, Australia's minerals sector has an opportunity to spearhead the Covid-19 recovery and support the technologies needed for a cleaner, environmentally robust and prosperous planet - stopping the four horsemen in their tracks.
-
Australia as it exists today is a product of geological processes that have occurred over its 4.5 billion year history. Isotopic studies are one approach to understanding the history and evolution of the Australian continent. Isotope geochronology tells us about the timing of a wide range of geological processes like crystallisation, deformation and cooling of rocks. Isotope geochemistry informs on the precursor components from which the rocks formed, and can act as 'paleogeophysical' sensors to tell us more about the subsurface. The Isotopic Atlas of Australia brings together five of the most widely used isotopic systems in geology and delivers publicly available maps and datasets in a consistent format. This work is unlocking the collective value of decades of investment in data collection, and facilitating qualitative and quantitative comparison and integration with other datasets such as geophysical images. This talk will be an introduction to the world of isotopes as applied to understand geology, and an overview of the Isotopic Atlas recently produced as part of the Exploring for the Future Program.
-
From minerals to meteorites, this presentation will delve into the amazing specimens held at the National Mineral & Fossil Collection, explore our recent work and projects, and identify our diverse stakeholders that we interact with as part of our goals of custodianship, education, outreach, and research support. The National Mineral & Fossil Collection houses world-class mineral, meteorite, fossil, and rock thin-section specimens. The collection is of scientific, historic, aesthetic, and social significance. Geoscience Australia is responsible for the management and preservation of the collection, as well as facilitating access to the collection for research, geoscience education, and public engagement. The collection contains an impressive: • 20,000 gem, mineral and meteorite specimens from localities in Australia and across the globe. • 45,000 published palaeontological specimens contained in the Commonwealth Palaeontological Collection (CPC). • 1,000,000 unpublished fossils in a ‘Bulk Fossil’ collection. • 100,000 rock thin section slides. • 200 historical geoscience instruments including, cartography, geophysical, and laboratory equipment.
-
Earth is the only terrestrial planet in the solar system with continents, and hence understanding their evolution is vital to unravelling what makes Earth special – our liquid oceans, oxygenated atmosphere, and ultimately, life. The continental crust is also host to all our mineable mineral deposits, and hence it has played a key role in the establishment of human civilisation. This link between the crust and human development will be even more prominent through the need for critical metals, as our society transitions toward green technologies. In this talk, we will discuss the link between the time-space evolution of the continental crust and the location of major mineral systems. By using isotopic data from micron-scale zircon crystals, we can map the crustal architectures that control the large-scale localisation of numerous mineral provinces. This work demonstrates the intimate link between the evolution of the continents, the understanding of mineral systems, and ultimately our continued evolution as an industrialised society.
-
The clean energy transition will require a vast increase in metal supply, yet discoveries of new mineral deposits are declining. Recently, several case studies have demonstrated links between electrical conductors imaged using magnetotelluric (MT) data and mineral deposits. Use of MT methods for exploration is therefore growing but the general applicability has not yet been tested. We look at spatial relationships between conductors and three deposit styles and find that volcanic hosted massive sulfide (VHMS) and copper porphyry deposits show weak to moderate correlations with conductors in the upper mantle. In contrast, orogenic gold deposits show strong correlations with mid-crustal conductors. These differences likely reflect differences in the way these deposits form, and suggest a metamorphic-fluid source for orogenic gold is significant. The resistivity signature can be preserved for hundreds of millions of years, and therefore MT can be a powerful tool for mineral exploration.
-
Every day, humanity benefits from geodesy. Geodesy is the science of measuring the size, shape, orientation and gravity field of our planet and it is a foundation for evidence-based policies, decisions and program delivery. Geodesy is used every day, in the fields of civil engineering, industrial automation, agriculture, construction, mining, financial transactions, intelligent transport systems, disaster response and emergency management, environmental studies and scientific research. Furthermore, geodesy enables accurate collection, management and alignment of nationally integrated geospatial information – a key requirement for societal, environmental and economic activities, the measuring and monitoring of progress of the 2030 Agenda for Sustainable Development, the Sendai Framework for Disaster Risk Reduction, the Small Island Developing States Accelerated Modalities of Action (SAMOA) Pathway, and other global, regional and national development agenda and initiatives.
-
In geoscience we often use ‘quality’ to describe our activities and products, but what does ‘quality’ actually look like? How do we measure it and determine if something is the ‘quality’ facility or ‘quality’ data we say it is? This is not simply an esoteric thought experiment – it matters: end-users and stakeholders are already making decisions potentially affecting whole communities and worth millions of dollars based on their understanding of the quality of our geochemical analytical data. These products are the foundation of Geoscience Australia’s reputation as a trusted advisor to government, communities and industry. This talk will guide you through the Geoscience Australia Laboratory, paying particular focus to our role in quality control and assurance for a range of analytical data products, including our core analytical capabilities in Organic Geochemistry, Microanalysis and Physical Properties. You will hear how the labs are evolving as we build new facilities and build on our capabilities. You will learn more about the importance of quality, how it is defined and some tools to apply in your own work.