From 1 - 2 / 2
  • Our knowledge of life at the Antarctic sea-bed has increased in the past decades with increasing ship-based surveys and monitoring sites, new technologies and data sharing. However, seafloor habitats and their communities exhibit high spatial variability and heterogeneity that limits our ability to assess the state of the Southern Ocean benthos on larger scales. The seafloor communities that inhabit the Antarctic shelf are often diversity hotspots. These habitats are important in the generation of ‘blue carbon’ and habitat for commercial fish species, for this reason we focus on these habitats. Many Southern Ocean seafloor habitats and their communities seem to be especially vulnerable to certain drivers of change including increasing ocean temperatures, iceberg scour, sea-ice melt, ocean acidification, fishing pressures, pollution and non-indigenous species. Some of the most vulnerable areas include those experiencing rapid regional warming and increased iceberg-scouring e.g. the West Antarctic Peninsula; where human activities and environmental conditions increase the potential for the establishment of non-indigenous species e.g. sub-Antarctic islands and tourist destinations and areas with fishing activities e.g. around South Georgia, Heard and MacDonald Islands. Vulnerable species include calcifying species susceptible to increasing ocean acidity as well as slow-growing habitat forming species that can be damaged by fishing gears e.g. sponges, bryozoan and coral species. Management regimes can protect seafloor habitats and key species from fishing activities but only if they consider specific traits, such as longevity, food availability, their physiological adaptation and rare or common occurrences. Ecosystem-based management practices and long-term protected areas may be the most effective in the preservation of vulnerable seafloor habitats. However, action is needed to reduce carbon emissions to limit the impact of increasing ocean temperatures and ocean acidification. We focus on outlining seafloor responses to drivers of change observed to date and projections for the future. We discuss the need for action to preserve seafloor habitats under climate change and fishing pressures. <b>Citation:</b> Brasier MJ, Barnes D, Bax N, Brandt A, Christianson AB, Constable AJ, Downey R, Figuerola B, Griffiths H, Gutt J, Lockhart S, Morley SA, Post AL, Van de Putte A, Saeedi H, Stark JS, Sumner M and Waller CL (2021) Responses of Southern Ocean Seafloor Habitats and Communities to Global and Local Drivers of Change. <i>Front. Mar. Sci.</i> 8:622721. doi: 10.3389/fmars.2021.622721

  • The Evidence Based Decision Making (EBDM) paradigm encourages managers to base their decisions on the strongest available evidence, but it has been criticized for placing too much emphasis on the choice of study design method without considering the types of questions that are being addressed as well as other relevant factors such as how well a study is implemented. Here we review the objectives of Australia’s Marine Park network, and identify the types of questions and data analysis that would address these objectives. Critically, we consider how the design of a monitoring program influences our ability to adequately answer these questions, using the strength of evidence hierarchy from the EBDM paradigm to assess the adequacy of different design strategies and other sources of information. It is important for conservation managers to recognize that the types of questions monitoring programs are able to answer depends on how they are designed and how the collected data are analyzed. The socio-political process that dictates where protected areas are placed typically excludes the strongest types of evidence, Random Controlled Trials (RCTs), for certain questions. Evidence bases that are stronger than ones commonly employed to date, however, could be used to provide a causal inference, including for those questions where RCTs are excluded, but only if appropriate designs such as cohort or case-control studies are used, and supported where relevant by appropriate sample frames. Randomized, spatially balanced sampling, together with careful selection of control sites, and more extensive use of propensity scores and structured elicitation of expert judgment, are also practical ways to improve the evidence base for answering the questions that underlie marine park objectives and motivate long-term monitoring programs. <b>Citation:</b> Hayes KR, Hosack GR, Lawrence E, Hedge P, Barrett NS, Przeslawski R, Caley MJ and Foster SD (2019) Designing Monitoring Programs for Marine Protected Areas Within an Evidence Based Decision Making Paradigm.<i> Front. Mar. Sci</i>. 6:746. doi: 10.3389/fmars.2019.00746