From 1 - 7 / 7
  • This flythrough highlights seabed environments within two areas of Arafura Marine Park offshore northern Australia; Money Shoal and Pillar Bank. Located 250 km to the northeast of Darwin within the Arafura Sea, the marine park extends to the limit of Australia’s exclusive economic zone, covering an area of 22,924 km2. Money Shoal is an isolated carbonate reef platform on the continental shelf that rises from 70 m to shallow subtidal depths and supports a diverse coral and demersal fish community. The surrounding seabed comprises muddy substrate characterized by extensive fields of pockmark, interpreted as evidence for fluid escape from organic-rich sediment. Pillar Bank, in contrast, is representative of the deeper (150 – 200 m depths) outer shelf area of the marine park that supports sparse benthic communities of filter feeders on local outcrops of hard substrate, surrounded by expanses of muddy substrate. Demersal fish are also present, as observed using baited underwater cameras. Bathymetry data and seafloor imagery for this flythrough was collected in November 2020 by Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) on board RV Solander during survey SOL7491/GA0366. Funding was provided by the Australian Government’s National Environmental Science Program (NESP) Marine Biodiversity Hub, with co-investment by GA and AIMS. For further information see: Picard, K. et al. 2020. Arafura Marine Park Post Survey Report. www.nespmarine.edu.au

  • <div>FrontierSI has been engaged by Geoscience Australia (GA) to establish a series of case studies showcasing the benefits of Positioning Australia products and services through demonstrations of precise positioning capability. The Australian Institute of Marine Science (AIMS) was selected as the demonstration partner for this case study, contributing their extensive knowledge of current and future marine technologies and providing a suitably challenging environment for deployment of precise positioning solutions. This project investigates the available options for provision of precise global navigation satellite systems (GNSS) positioning at the AIMS Marine Operations Centre, and explores the suitability, benefits, and challenges of using Positioning Australia products including Ginan for this purpose.&nbsp;</div>

  • <div>FrontierSI has been engaged by Geoscience Australia (GA) to establish a series of case studies showcasing the benefits of Positioning Australia products and services through demonstrations of precise positioning capability. This case study is the second in the series and in a collaboration with The Bureau of Meteorology (BOM) it aims to explore the use of Ginan’s post-processing capabilities for determining receiver altitude and atmospheric parameters from global navigation satellite systems (GNSS) observations collected from a high-altitude balloon.</div>

  • <div>FrontierSI has been engaged by Geoscience Australia (GA) to establish a series of case studies showcasing the benefits of Positioning Australia products and services through demonstrations of precise positioning capability. This case study is the third in the series and in a collaboration with The Commonwealth Scientific and Industrial Research Organisation&nbsp;(CSIRO) it aims to explore the use of Ginan’s real-time and post-processing capabilities for determining water level height from a global navigation satellite systems (GNSS) receiver deployed on a floating pontoon on Googong Dam.</div>

  • <div>The Georges River (Sydney Region) 5m Digital Elevation Model (DEM) is generated from all relevant data available on the Elvis - Elevation and Depth - Foundation Spatial Data (Elvis) platform with a resolution of 5 Metres or higher. Source datasets with a resolution higher than 5m have been resampled to 5m.</div><div>This elevation model is generated from a total of 989 datasets sourced from multiple providers including State and Territory Governments. The capture dates for input data range from 2011/02/26 - 2021/06/05. See Table 1 below for further information. The area covers the land mass of the Georges River (Sydney Region) drainage basin as defined by the Bureau of Meteorology Geofabric.</div>

  • <div>The Bellinger River 5m Digital Elevation Model (DEM) is generated from all relevant data available on the Elvis - Elevation and Depth - Foundation Spatial Data (Elvis) platform with a resolution of 5 Metres or higher. Source datasets with a resolution higher than 5m have been resampled to 5m.&nbsp;</div><div><br></div><div>This elevation model is generated from a total of 1020 datasets sourced from multiple providers including State and Territory Governments. The capture dates for input data range from 16/12/2009 - 01/07/2018. See Table 1 below for further information.&nbsp;</div><div><br></div><div>The area covers the land mass of the Bellinger River drainage basin as defined by the Bureau of Meteorology Geofabric. Near shore bathymetry data has also been included in the final raster.&nbsp;</div><div><br></div>

  • <div>The Macleay River 5m Digital Elevation Model (DEM) is generated from all relevant data available on the Elvis - Elevation and Depth - Foundation Spatial Data (Elvis) platform with a resolution of 5 Metres or higher. Source datasets with a resolution higher than 5m have been resampled to 5m.&nbsp;</div><div>This elevation model is generated from a total of 3136 datasets sourced from multiple providers including State and Territory Governments. The capture dates for input data range from 30/10/2009 - 14/05/2018. See Table 1 below for further information.&nbsp;</div><div>The area covers the land mass of the Macleay River drainage basin as defined by the Bureau of Meteorology Geofabric. Near shore bathymetry data has also been included in the final raster.&nbsp;</div><div><br></div>