Foundation Spatial Data Framework
Type of resources
Keywords
Publication year
Topics
-
Radio-loud quasars at high redshift (z ≥ 4) are rare objects in the universe and rarely observed with Very Long Baseline Interferometry (VLBI). But some of them have flux density sufficiently high for monitoring of their apparent position. The instability of the astrometric positions could be linked to the astrophysical process in the jetted active galactic nuclei in the early universe. Regular observations of the high-redshift quasars are used for estimating their apparent proper motion over several years. We have undertaken regular VLBI observations of several high-redshift quasars at 2.3 GHz (S band) and 8.4 GHz (X band) with a network of five radio telescopes: 40 m Yebes (Spain), 25 m Sheshan (China), and three 32 m telescopes of the Quasar VLBI Network (Russia)—Svetloe, Zelenchukskaya, and Badary. Additional facilities joined this network occasionally. The sources have also been observed in three sessions with the European VLBI Network in 2018–2019 and one Long Baseline Array experiment in 2018. In addition, several experiments conducted with the Very Long Baseline Array in 2017–2018 were used to improve the time sampling and the statistics. Based on these 37 astrometric VLBI experiments between 2017 and 2021, we estimated the apparent proper motions of four quasars: 0901+697, 1428+422, 1508+572, and 2101+600. Citation: Oleg Titov <i>et al </i>2023 <i>AJ</i><b> 165</b> 69
-
The Foundation Facility Point product contains five facility types, Private Hospitals, Public Hospitals, Aged Care Facilities, Educational Facilities and Emergency Management Facilities. The Foundation Facility Point Database presents the spatial location; in point format, of publicly available data. Facility Points are derived from various sources and consistency is mixed across Australia.
-
<div>A set of Foundation Spatial Data Framework (FSDF) datasets built as Linked-Data RDF triples. Includes Electrical Infrastructure, Emergency Facilities, and Placenames. (Sits alongside other Geoscience RDF data bases and their APIs). An API built over this RDF database supplies mapped detail of each individual feature along with metadata, geometry, alternate views and profiles. RDF provides a standardized schema for use with any other datasets based on RDF Triples. The API is human readable and machine readable. Machine readability allows web based APIs and dashboards to consume the data in a number of standardized formats, to value add and build specialized tools for a great variety of uses, including emergency use dashboards and higher level APIs.</div><div><br></div><div>The API conforms with the OGC LA API standard and uses VocPrez and SpacePrez technology.</div>