From 1 - 9 / 9
  • Green steel, produced using renewable energy and hydrogen, presents a promising avenue to decarbonize steel manufacturing and expand the hydrogen industry. Australia, endowed with abundant renewable resources and iron ore deposits, is ideally placed to support this global effort. This paper's two-step analytical approach offers the first comprehensive assessment of Australia's potential to develop green steel as a value-added export commodity. The Economic Fairways modelling reveals a strong alignment between prospective hydrogen hubs and current and future iron ore operations, enabling shared infrastructure development and first-mover advantages. By employing a site-based system optimization that integrates both wind and solar power sources, the cost of producing green steel could decrease significantly to around AU$900 per tonne by 2030 and AU$750 per tonne by 2050. Moreover, replacing 1% of global steel production would require 35 GW of well-optimized wind and solar photovoltaics, 16 GW of hydrogen electrolysers, and 1000 square kilometres of land. Sensitivity analysis further indicates that iron ore prices would exert a long-term influence on green steel prices. Overall, this study highlights the opportunities and challenges facing the Australian iron ore industry in contributing to the decarbonization of the global steel sector, underscoring the crucial role of government support in driving the growth and development of the green steel industry. <b>Citation:</b> Wang C et al., Green steel: Synergies between the Australian iron ore industry and the production of green hydrogen, <i>International Journal of Hydrogen Energy,</i> Volume 48, Issue 81, 1 October 2023, Pages 32277-32293, ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2023.05.041

  • <div>The energy and resources industries are two essential pillars of Australia’s economy and vital sectors in the global transition to a sustainable and net-zero economy. To enhance Australia’s competitiveness, there is an urgent need to explore technical and strategic challenges and opportunities to unlock domestic hydrogen and green steel development pathways that are suitable for the Australian resources and manufacturing ecosystem. </div><div><br></div><div>Held on 30 August 2023 in Perth, Western Australia, this workshop provided Australian stakeholders in the hydrogen, iron ore and government sectors a forum to share, discuss and provide insight on a broad range of aspects relevant to hydrogen and green steel development opportunities across Australia—including identifying investment hurdles, technical challenges and knowledge gaps, and fostering new innovation and collaboration opportunities.</div><div><br></div><div>As part of the Exploring for the Future program, Geoscience Australia, in collaboration with Monash University, premiered its Green Steel Economic Fairways tool, which utilises geoscience knowledge and data to highlight regional opportunities of high economic potential for hydrogen and green steel industries in Australia.</div><div><br></div><div>The recording of the workshop presentations is available on YouTube.</div>

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract <strong> </strong></div><div><br></div><div><strong>Short abstract: </strong>There is an increased international focus on achieving high environmental, socio-economic, and governance (ESG) outcomes within mineral supply chains, in addition to delivering positive economic results. Mineral exploration and development projects must balance these disparate objectives to the satisfaction of separate stakeholders. However, the challenge of reconciling distinct preferences can obscure viable outcomes and confound project selection, particularly in the early stages of project development. Here, we discuss how such investment decisions can be treated as multicriteria optimization problems. In appraising the pre-competitive potential for nickel sulphide developments, we show how this approach can be used to effectively evaluate competing objectives and to locate regions that perform best under a range of different metrics. We outline a mapping framework that identifies Australian regions that optimally balance geological potential, economic value, and environmental impact. Our workflow creates a new capability within Australia to incorporate high-level, holistic information into the earliest stages of exploration. While this abstract focuses on mineral exploration, the modelling could be extended to other Australian resource development applications. Importantly, our results further underscore the need to compile baseline ESG datasets across Australia to help drive sustainable exploration decisions.</div><div><br></div><div><strong>Citation:</strong> Walsh S.D.C., Haynes M.W. &amp; Wang C., 2024. Multicriteria resource potential mapping: balancing geological, economic &amp; environmental factors. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/149250</div>

  • <div>Mineral exploration and development involves the selection of potential projects which must be evaluated across disparate characteristics. However, the distinct metrics involved are typically difficult to reconcile (e.g. geological potential, environmental impact, jobs created, value generated, etc.). Separate stakeholders—with different goals and attitudes—will reasonably differ in their preferences as to which categories to prioritize and how much weight to give to each. These conflicting preferences can obscure optimal outcomes and confound project selection.</div><div><br></div><div>In this presentation, we will discuss how early-stage exploration decisions can be treated as multi-criteria optimization problems. We show how this approach can be used to effectively evaluate and communicate competing criteria, and locate regions that perform best under a range of different metrics. We then outline a mapping framework that identifies regions that perform best in terms of geological potential, economic value and environmental impact and demonstrate this approach in a real-word example that highlights new exploration targets in the Australian context. Abstract presented at the American Geophysical Union (AGU) Fall Meeting 2023 (AGU23) https://www.agu.org/fall-meeting

  • The Exploring for the Future program Virtual Roadshow was held on 7 July and 14-17 July 2020. The Minerals session of the roadshow was held on 14 July 2020 and consisted of the following presentations: Introduction - Richard Blewett Preamble - Karol Kzarnota Surface & Basins or Cover - Marie-Aude Bonnardot Crust - Kathryn Waltenberg Mantle - Marcus Haynes Zinc on the edge: New insights into sediment-hosted base metals mineral system - David Huston Scale reduction targeting for Iron-Oxide-Copper-Gold in Tennant Creek and Mt Isa - Anthony Schofield and Andrew Clark Economic Fairways and Wrap-up - Karol Czarnota

  • <div>Global steel demand is forecast to grow in the coming decades with continued development across Asia and Africa. Over the same period, the International Energy Agency suggests that the carbon intensity of steel production will need to decrease rapidly to align with projected pathways to net zero emissions by 2050. Balancing these competing priorities is a challenge that could shift global steelmaking business models. With abundant resources of both iron ore and metallurgical coal, Australia has benefited significantly from traditional steelmaking value chains. In the face of potential disruption, how should Australia navigate the challenges and opportunities accompanying the transition to ’green’ steel? How can geoscience help to identify and leverage Australia’s specific advantages?&nbsp;</div><div><br></div><div>The Green Steel Economic Fairways Mapper is a free, online tool that models the costs of hydrogen-based green ironmaking and steelmaking and maps how these costs vary across Australia. Developed through collaboration between Geoscience Australia and Monash University, it represents a novel approach to model multiple interconnected resource facilities. Following the Economic Fairways approach, the Mapper combines large-scale infrastructure and geoscience datasets to provide a high-level, geospatial analysis of the economic viability of hypothetical green steel projects. In doing so it creates a new capability within Australia—filling the void before the detail and expense of feasibility studies—to understand the broad contours of the decarbonization challenge, and to inform early-stage decision making in the pursuit of low-carbon steel. In this seminar, we introduce the Green Steel Economic Fairways Mapper, demonstrate its capabilities, and discuss some of the insights it reveals.&nbsp;</div>

  • Australian iron ore is predominantly exported and used for steelmaking internationally. However, steelmaking is an energy- and carbon-intensive heavy industry, and its electrification in the coming decades will likely disrupt the existing iron ore–steel value chains. Green steel—produced using hydrogen and electricity from renewable energy sources—presents both opportunities and challenges for Australia. Indeed, with abundant renewable energy potential and iron-ore resources, Australia could lead this global transformation. Here, we examine the interrelationships between the Australian iron-ore industry, the production of green-hydrogen from renewable energy sources, and an emergent green steelmaking process. In particular, we undertake detailed case studies to estimate current green steel production costs within two regions; the Pilbara Craton in Western Australia and the Eyre Peninsula in South Australia. While existing technology is not well suited to Australian hematite ores, our analysis highlights the site-specific competitiveness of small-scale, magnetite-fed, off-grid operations. The results underscore the advantages of a well-optimised system in decreasing hydrogen and energy storage requirements, and decreasing production costs. While our results also suggest that grid-connected projects could reduce costs through flexible operation, more work is required to understand the limitations of these conclusions. The results underscore the need to develop technologies to utilise hematite ores in green steelmaking, but also highlight the opportunity for this emerging industry to commercialise Australia’s magnetite resources. <b>Citation: </b>Wang C., Walsh S. D. C., Haynes M. W., Weng Z., Feitz A., Summerfield D., & Lutalo I., 2022. From Australian iron ore to green steel: the opportunity for technology-driven decarbonisation. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/147005

  • <div>Steelmaking value chains are economically important to Australia, but the need to decarbonize traditional steel-making processes could disrupt existing supply lines. Hydrogen-based iron and steel production offers one pathway for reducing the carbon intensity of steel. Here, we present maps assessing the costs of hydrogen-based direct reduction of iron oxides (to produce hot briquetted iron), optionally coupled with steelmaking in an electric arc furnace (i.e. the H2-DRI-EAF value chain). Developed as part of the Exploring for the Future program and in collaboration with Monash University, these models build off the functionality of the Green Steel Economic Fairways Mapper (beta release), with additional enhancements to the modelling algorithm to reflect constant furnace operation, the incorporation of costings to transport the produced hot briquetted iron or steel to domestic ports, and the optimisation of facility capacities. The capacity of facilities (including solar and wind generation, proton exchange membrane [PEM] electolysis, battery storage, and hydrogen storage tanks) are determined by the 1 Mtpa production target and the local availability of renewable energy resources, as modelled according to 2019 data sourced from the Renewables.Ninja (https://www.renewables.ninja/; Pfenninger & Staffell, 2016; Staffell & Pfenninger, 2016). The high-resolution (approximately 5.5 km pixels) maps reflect our preferred technology cost assumptions (see Wang et al., 2023) for the year 2025. Iron concentrate feedstocks are assumed to cost AU$150 per tonne, reflecting approximate costs for 65 % Fe pellets as derived from magnetite ores. Conversions to USD assume US$1.00 = AU$0.73.</div><div><br></div><div>Geoscience Australia's Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia's geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia's transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia's regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>

  • <div>Steelmaking value chains are economically important to Australia, but the need to decarbonize traditional steel-making processes could disrupt existing supply lines. Hydrogen-based iron and steel production offers one pathway for reducing the carbon intensity of steel. The opportunities and challenges presented by this technology, for Australia, are obscured as its cost competitiveness depends on the interaction between multiple industrial processes, including feedstock requirements, storage options, and the availability of infrastructure. To address these problems, we have developed the Green Steel Economic Fairways Mapper. This mapping tool enables user-driven assessments of the green iron or steel resource potential across Australia. The tool optimizes system capacities for renewable energy generation, battery storage, hydrogen electrolysis, and hydrogen storage to estimate the levelized costs of green steel and how these costs vary regionally. Here, we present examples of analysis and integration with other geospatial datasets. Our model compares favourably to previously published cost estimates while also providing granular, spatial considerations of resource potential. Examples demonstrate that the tool that can be used to inform decision-making in the development of actions to de-risk green steel development within Australia.</div>