From 1 - 10 / 27
  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225 m investment by the Australian Government. </div><div>As part of this program, Geoscience Australia led two deep crustal reflection seismic surveys in the South Nicholson region, revealing the existence of the Carrara Sub-basin, a large sedimentary depocentre up to 8 km deep, beneath the Georgina Basin (Carr et al., 2019; 2020). The depocentre is believed to contain thick sequences of highly prospective Proterozoic rocks for base metals and unconventional hydrocarbons. To confirm geological interpretations and assess resource potential, the National Drilling Initiative, NDI Carrara 1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS) and the MinEx CRC (Geoscience Australia, 2021). NDI Carrara 1 is located on the western flank of the Carrara Sub-basin on the South Nicholson seismic line (17GA-SN1) (Figure 1.1; Figure 1.2), reaching a total depth of 1751 m, intersecting sedimentary rocks comprising ca. 630 m of Cambrian calcareous shales of the Georgina Basin and ca. 1100 m of Proterozoic carbonates and siliciclastics that include black shales of the Carrara Sub-basin.</div><div>This report presents data on selected rock samples from NDI Carrara&nbsp;1, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include bulk carbon isotope ratios (δ13C) of bitumens and isolated kerogens. In addition, a selection of 10 samples was analysed at Geoscience Australia for comparison purposes.</div><div><br></div>

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1750 m provide samples of the highest quality for a comprehensive geochemical program designed to inform on the energy and mineral prospectivity of the Carrara Sub-basin. Total Organic Carbon (TOC) contents from Rock-Eval pyrolysis of the Cambrian and Proterozoic sections demonstrate the potential for several thick black shales as source rocks and unconventional plays. Evidence for retained hydrocarbons included bituminous oil stains in centimetre-scale vugs within the Cambrian Georgina Basin and several oil bleeds within the Proterozoic section. The latter also contains surface gas with up to 2% methane concentrations measured within carbonaceous mudstones. Geochemical analyses of hydrocarbon shows highlight the occurrence of several petroleum systems operating in this frontier region. The results at NDI Carrara 1 offer the promise of a new exciting resource province in northern Australia.

  • In 2017, under the Federal Governments’ Exploring for the Future program, in collaboration with the NTGS under their ‘Resourcing the Territory’ initiative, Geoscience Australia acquired the South Nicholson Deep Crustal Seismic Reflection Survey in north-eastern Northern Territory. One of the key discoveries of this survey was the identification of a large sedimentary depocentre, concealed beneath the sedimentary rocks of the Cambrian Georgina Basin. This depocentre, up to 7 km deep, termed the ‘Carrara Sub-basin’ by Geoscience Australia (e.g. Carr et al., 2020), is interpreted to contain thick sequences of resource-rich Proterozoic rocks, broadly equivalent to rocks of the greater McArthur Basin (Northern Territory) and northern Lawn Hill Platform and Mount Isa Province of northwest Queensland, rocks that are highly prospective for sediment-hosted base metals and unconventional hydrocarbons. The Carrara-1 stratigraphic drillhole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey and the MinEx CRC. Carrara-1 is the first drillhole to intersect the undifferentiated Proterozoic rocks of the Carrara Sub-Basin. Carrara-1 is located on the western flanks of the Carrara Sub-basin on the South Nicholson Seismic line (17GA-SN1), reaching a total depth of 1751 m, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and minor siliciclastics. These rocks preserve evidence of both oil and gas and visible disseminated sulphide mineralisation. Carrara-1 affords us a privileged glimpse into this highly prospective and exciting frontier Proterozoic basin.

  • The NDI Carrara 1 sedimentology, microstructural analysis and sequence stratigraphy program was a joint undertaking between Geoscience Australia (GA) and CSIRO (Perth) as part of the Exploring for the Future program to examine the sedimentology, sequence stratigraphy and paleogeography of the Carrara Sub-basin. The program was based on recovered core from the National Drilling Initiative (NDI) deep stratigraphic drill hole, NDI Carrara 1. NDI Carrara 1 is the first drill hole to intersect the Proterozoic rocks of the Carrara Sub-Basin, a large depocentre discovered during seismic acquisition conducted during the first phase of the EFTF program in 2017. NDI Carrara 1 is located on the western flanks of the Carrara Sub-basin, reaching a total depth of 1751 m, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and siliciclastics. This final report, and associated appendices, compiles the findings of three milestone deliverables. The first component of the report addresses the sedimentology of the Proterozoic section of NDI Carrara 1 with an accompanying Appendix (core log, from HyLogger data). The second component is a detailed microstructural analysis based on selected thin sections in intervals of interest. The final component completed a 1D sequence stratigraphic assessment, enabling regional stratigraphic correlations to be established and an interpretive paleogeographic map generated for the Proterozoic sequences of interest across the region .

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents inorganic geochemical analyses undertaken by Geoscience Australia on selected rock samples, collected at roughly 4 m intervals.

  • As part of Geoscience Australia’s Exploring for the Future program, this study aims to analyse the hydrocarbon prospectivity in the Carrra Sub-basin through wireline log interpretation and shale gas reservoir characterisation. NDI Carrara 1 is the first stratigraphic test of the Carrara Sub-basin, a recently uncovered depocentre located within the South Nicholson region of the eastern Northern Territory and northwestern Queensland. Four chemostratigraphic packages were defined according to the informal sub-division of stratigraphy and inorganic geochemical properties. Wireline log interpretation has been conducted to derive the clay mineral compositions, porosity, gas saturation and gas contents for the unconventional shale gas reservoirs in the Proterozoic succession in NDI Carrara 1. The predominant clay minerals include illite/muscovite, mixed-layer clay, smectite, kaolinite, and minor contents of glauconite and chlorite. The average geothermal gradient is estimated to be 35.04 °C/km with a surface temperature of 29.4 °C. The average formation pressure gradient is calculated to be < 10.7 MPa/km from mud weight records. Artificial neural network technology is used to interpret the TOC content from wireline logs for unconventional shale gas reservoirs. TOC content is positively correlated with methane and ethane concentrations in mudlog gas profiles, shale porosity, formation resistivity and gas content for NDI Carrara 1. The organic-rich shales in P2 have favourable adsorbed, free and total gas contents. The organic-rich micrites within P3 have the potential in adsorbed gas, but with very low average gas saturation (< 0.01 m3/m3). Our interpretation has identified potential shale gas reservoirs, as well as tight non-organic-rich shales and siltstones with potential as gas reservoirs. These occur throughout several of the identified chemostratigraphic packages within the Proterozoic section of NDI Carrara 1.

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents petrology and clay speciation XRD conducted on of 6 selected volcaniclastic rocks taken from NDI Carrara 1 between ca. 1579 m and ca. 1653 m depth. Petrology and XRD was undertaken by Microanalysis Australia (under contract to Geoscience Australia as part of the Exploring for the Future program). Borehole completion report can be found at https://portal.ga.gov.au/bhcr/minerals/648482

  • To test existing geological interpretations and the regional stratigraphic relationships of the Carrara Sub-basin with adjacent resource-rich provinces, the deep stratigraphic drill hole NDI Carrara 1 was located on the western flanks of the Carrara Sub-basin, on the seismic line 17GA-SN1. The recovery of high quality near-continuous core from the Carrara Sub-basin, in concert with the spectrum of baseline analytical work being conducted by Geoscience Australia through the EFTF program, as well as other work by government and university researchers is greatly improving our understanding of this new basin. While recently published geochemistry baseline datasets have provided valuable insight into the Carrara Sub-basin, the age of the sedimentary rocks intersected by NDI Carrara 1 and their chronostratigraphic relationships with adjacent resource rich regions has remained an outstanding question. In this contribution, we present new sensitive high-resolution ion microprobe (SHRIMP) geochronology results from NDI Carrara 1 and establish regional stratigraphic correlations to better understand the energy and base-metal resource potential of this exciting frontier basin in northern Australia.

  • Stratigraphic drill hole NDI Carrara 1 was drilled as a collaboration between Geoscience Australia (GA), the Northern Territory Geological Survey (NTGS) and the Mineral Exploration Cooperative Research Centre (MinEx CRC). It reached a total depth of 1751 m in late 2020 and is the first drill hole to intersect the undifferentiated Proterozoic rocks of the Carrara Sub-Basin. It intersected approximately 630 m of Cambrian Georgina Basin sedimentary rocks overlying the ~1100 m of Proterozoic carbonates, black shales and other siliciclastics of the Carrara Sub-Basin succession. The formational assignments of the Georgina Basin succession are preliminary and were assigned in the field. The units intersected comprise the Border Waterhole Formation (~531m to ~630m), which is overlain by the Currant Bush Limestone (~249m to ~531m), which in turn is overlain by the Camooweal Dolostone (0m to ~249m). Of these, only the lower 80% of the Currant Bush Limestone and the entire Border Waterhole Formation were cored. This report presents biostratigraphic results from macrofossil examination of NDI Carrara 1 core samples within the Georgina Basin section.

  • Exploring for the Future (EFTF) is an Australian Government initiative that gathers new data and information about potential mineral, energy and groundwater resources. Commencing in 2016 with a focus on northern Australia, an EFTF extension to 2024 was recently announced, with expanded coverage across mainland Australia and Tasmania. The EFTF energy component aims to improve our understanding of the petroleum potential of frontier onshore Australian basins and has acquired significant pre-competitive datasets, including the recently drilled Barnicarndy 1 deep stratigraphic well in Western Australia’s Canning Basin (in partnership with the Geological Survey of Western Australia), and NDI Carrara 1 deep stratigraphic well in the South Nicholson region of the Northern Territory (in partnership with the MinEX CRC). These are the first stratigraphic wells drilled in a petroleum basin by Geoscience Australia since the formation in 2001 from its predecessor agencies. Both wells were sited along two-dimensional, deep crustal seismic surveys acquired by Geoscience Australia as part of EFTF, and provide stratigraphic control for the imaged geology. The sedimentary fill intersected by the Barnicarndy 1 and NDI Carrara 1 wells were cored and logged with a broad suite of wireline tools, providing substantial new data in two frontier basins. These data provide insights into regional stratigraphy and local lithology. Geochronology, petrographic, organic and inorganic geochemistry, petrophysical rock properties, petroleum systems elements, palaeontological, and fluid inclusion studies have been undertaken upon which inferences on regional prospectivity can made in these data-poor regions. Moving into the next phase of EFTF, these wells provide a template for new pre-competitive data acquisition by Geoscience Australia, expanding our knowledge of frontier regions making them attractive for new investment and exploration.