From 1 - 10 / 25
  • Papua New Guinea (PNG) lies in a belt of intense tectonic activity that experiences high levels of seismicity. Although this seismicity poses significant risks to society, the Building Code of PNG and its underpinning seismic loading requirements have not been revised since 1982. This study aims to partially address this gap by updating the seismic zoning map on which the earthquake loading component of the building code is based. We performed a new probabilistic seismic hazard assessment for PNG using the OpenQuake software developed by the Global Earthquake Model Foundation (Pagani et al. 2014). Among other enhancements, for the first time together with background sources, individual fault sources are implemented to represent active major and microplate boundaries in the region to better constrain the earthquake-rate and seismic-source models. The seismic-source model also models intraslab, Wadati–Benioff zone seismicity in a more realistic way using a continuous slab volume to constrain the finite ruptures of such events. The results suggest a high level of hazard in the coastal areas of the Huon Peninsula and the New Britain – Bougainville region, and a relatively low level of hazard in the southwestern part of mainland PNG. In comparison with the seismic zonation map in the current design standard, it can be noted that the spatial distribution of seismic hazard used for building design does not match the bedrock hazard distribution of this study. In particular, the high seismic hazard of the Huon Peninsula in the revised assessment is not captured in the current building code of PNG. <b>Citation:</b> Ghasemi, H., Cummins, P., Weatherill, G. <i>et al.</i> Seismotectonic model and probabilistic seismic hazard assessment for Papua New Guinea. <i>Bull Earthquake Eng, </i><b>18</b>, 6571–6605 (2020). https://doi.org/10.1007/s10518-020-00966-1

  • Geoscience Australia, together with contributors from the wider Australian seismology community, have produced a draft National Seismic Hazard Assessment (NSHA18), recommended for inclusion in the 2018 update of Standards Australia’s Structural design actions, part 4: Earthquake actions in Australia, AS1170.4–2007 (Standards Australia, 2007). This Standard is prepared by Subcommittee BD-006-11, General Design Requirements and Loading on Structures of Standards Australia. The provisional seismic hazard values presented in this report have been submitted to comply with Standards Australia’s public comment and publication timelines. This report provides a brief overview of provisional mean peak ground acceleration values (equivalent to the seismic hazard factor Z in AS1170.4) and the approaches used. The hazard values are calculated on rock sites (AS1170.4 Site Class Be) for a probability of exceedance of 10% in 50 years (0.0021 per annum). Continued refinement of these values will occur throughout, and in response to, the first public comment period. While only minor changes are expected, the final NSHA18 will be completed prior to Standard Australia’s planned second public comment period (likely in late 2017). The NSHA18 update yields many important advances on its predecessors, including: • calculation in a full probabilistic framework (e.g., Cornell, 1968) using the Global Earthquake Model Foundation’s OpenQuake-engine (Pagani et al., 2014); • consistent expression of earthquake magnitudes in terms of moment magnitude, MW; • inclusion of epistemic uncertainty through the use of third-party source models contributed by the Australian seismology community; • inclusion of epistemic uncertainty on magnitude-frequency distributions; • inclusion of a national fault-source model based on the Australian Neotectonic Features database (Clark et al., 2012; Clark et al., 2016); • inclusion of epistemic uncertainty on fault-slip-model magnitude-frequency distributions and earthquake clustering; and • use of modern ground-motion models.

  • The Philippine archipalego is tectonically complex and seismically hazardous, yet few seismic hazard assessments have provided national coverage. This paper presents an updated probabilistic seismic hazard analysis for the nation. Active shallow crustal seismicity is modeled by faults and gridded point sources accounting for spatially variable occurrence rates. Subduction interfaces are modelled with faults of complex geometry. Intraslab seismicity is modeled by ruptures filling the slab volume. Source geometries and earthquake rates are derived from seismicity catalogs, geophysical datasets, and historic-to-paleoseismic constraints on fault slip rates. The ground motion characterization includes models designed for global use, with partial constraint by residual analysis. Shallow crustal faulting near metropolitan Manila, Davao, and Cebu dominates shaking hazard. In a few places, peak ground acceleration with 10% probability of exceedance in 50 years on rock reaches 1.0 g. The results of this study may assist in calculating the design base shear in the National Structural Code of the Philippines.

  • Canada's 6th Generation seismic hazard model has been developed to generate seismic design values for the 2020 National Building Code of Canada (NBCC2020). The model retains most of the seismic source model from the 5th Generation, but updates the earthquake sources for the deep inslab earthquakes under the Straits of Georgia and adds the Leech River - Devil’s Mountain fault near Victoria. The rates of magnitude ~9 Cascadia earthquakes are also increased to match new paleoseismic information. Two major changes in the ground motion model (GMM) are A) replacement of most of the three-branch representative suite used in 2015 by suites of weighted GMMs, and B) use and adaptation of various GMMs to directly calculate hazard on various site classes with representative Vs30 values, rather than providing hazard values on a reference Class C site and applying F(T) factors as in 2015. Computations are now also being performed with the OpenQuake engine, which has been validated through the replication of the 5th Generation results. Seismic design values (on various Soil Classes) for PGA, and for Sa(T) for T = 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 s are proposed for NBCC2020 mean ground shaking at the 2% in 50-year probability level. The paper discusses chiefly the change in Site Class C values relative to 2015 in terms of the changes in the seismic source model and the GMMs, but the changes in hazard at other site classes that arise from application of the direct-calculation approach are also illustrated.

  • <div>The city of Lae is Papua New Guinea (PNG)’s second largest, and is the home of PNG’s largest port. Here, a convergence rate of ~50 mm/yr between the South Bismarck Plate and the Australian Plate is accommodated across the Ramu-Markham Fault Zone (RMFZ). The active structures of the RMFZ are relatively closely spaced to the west of Lae. However, the fault zone bifurcates immediately west of the Lae urban area, with one strand continuing to the east, and a second strand trending southeast through Lae City and connecting to the Markham Trench within the Huon Gulf. </div><div>The geomorphology of the Lae region relates to the interaction between riverine (and limited marine) deposition and erosion, and range-building over low-angle thrust faults of the RMFZ. Flights of river terraces imply repeated tectonic uplift events; dating of these terraces will constrain the timing of past earthquakes and associated recurrence intervals. Terrace riser heights are typically on the order of 3 m, indicating causative earthquake events of greater than magnitude 7. </div><div>Future work will expose the most recently active fault traces in trenches to assess single event displacements, and extend the study to the RMFZ north of Nadzab Airport. These results will inform a seismic hazard and risk assessment for Lae city and surrounding region.</div> Presented at the 2023 Australian Earthquake Engineering Society (AEES) Conference

  • Seismic hazard models, commonly produced through probabilistic seismic hazard analysis, are used to establish earthquake loading requirements for the built environment. However, there is considerable uncertainty in developing seismic hazard models, which require assumptions on seismicity rates and ground-motion models (GMMs) based on the best evidence available to hazard analysts. This paper explores several area-based tests of long-term seismic hazard forecasts for the Australian continent. ShakeMaps are calculated for all earthquakes of MW 4.25 and greater within approximately 200 km of the Australian coastline using the observed seismicity in the past 50 years (1970-2019). A “composite ShakeMap” is generated that extracts the maximum peak ground acceleration “observed” in this 50-year period for any site within the continent. The fractional exceedance area of this composite map is compared with four generations of Australian seismic hazard maps for a 10% probability of exceedance in 50 years (~1/500 annual exceedance probability) developed since 1990. In general, all these seismic hazard models appear to be conservative relative to the observed ground motions that are estimated to have occurred in the last 50 years. To explore aspects of possible prejudice in this study, the variability in ground-motion exceedance was explored using the Next Generation Attenuation-East GMMs developed for the central and eastern United States. The sensitivity of these results is also tested with the interjection of a rare scenario earthquake with an expected regional recurrence of approximately 5,000 - 10,000 years. While these analyses do not provide a robust assessment of the performance of the candidate seismic hazard for any given location, they do provide—to the first order—a guide to the performance of the respective maps at a continental scale. This paper was presented at the Australian Earthquake Engineering Society 2021 Virtual Conference, Nov 25 – 26.

  • In plate boundary regions moderate to large earthquakes are often sufficiently frequent that fundamental seismic parameters such as the recurrence intervals of large earthquakes and maximum credible earthquake (Mmax) can be estimated with some degree of confidence. The same is not true for the Stable Continental Regions (SCRs) of the world. Large earthquakes are so infrequent that the data distributions upon which recurrence and Mmax estimates are based are heavily skewed towards magnitudes below Mw5.0, and so require significant extrapolation up to magnitudes for which the most damaging ground-shaking might be expected. The rarity of validating evidence from surface rupturing palaeo-earthquakes typically limits the confidence with which these extrapolated statistical parameters may be applied. Herein we present a new earthquake catalogue containing, in addition to the historic record of seismicity, 150 palaeo-earthquakes derived from 60 palaeo-earthquake features spanning the last > 100 ka of the history of the Precambrian shield and fringing extended margin of southwest Western Australia. From this combined dataset we show that Mmax in non-extended-SCR is M7.25 ± 0.1 and in extended-SCR is M7.65 ± 0.1. We also demonstrate that in the 230,000 km2 area of non-extended-SCR crust, the rate of seismic activity required to build these scarps is one tenth of the contemporary seismicity in the area, consistent with episodic or clustered models describing SCR earthquake recurrence. A dominance in the landscape of earthquake scarps reflecting multiple events suggests that the largest earthquakes are likely to occur on pre-existing faults. We expect these results might apply to most areas of non-extended-SCR worldwide.

  • Geoscience Australia has produced a draft National Seismic Hazard Assessment (NSHA18), together with contributions from the wider Australian seismology community. This paper provides an overview of the provisional peak ground acceleration (PGA) hazard values and discusses rationale for changes in the proposed design values at the 1/500-year annual exceedance probability (AEP) level relative to Standards Australia’s AS1170.4–2007 design maps. The NSHA18 update yields many important advances on its predecessors, including: consistent expression of earthquake magnitudes in moment magnitude; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model; inclusion of epistemic uncertainty on fault-slip-model magnitude-frequency distributions and earthquake clustering; and the use of modern ground-motion models through a weighted logic tree framework. In general, the 1/500-year AEP seismic hazard values across Australia have decreased relative to the earthquake hazard factors the AS1170.4–2007, in most localities significantly. The key reasons for the decrease in seismic hazard factors are due to: the reduction in the rates of moderate-to-large earthquakes through revision of earthquake magnitudes; the increase in b-values through the conversion of local magnitudes to moment magnitudes, particularly in eastern Australia, and; the use of modern ground-motion attenuation models. Whilst the seismic hazard is generally lower than in the present standard, we observe that the relative proportion of the Australian landmass exceeding given PGA thresholds is consistent with other national hazard models for stable continental regions.

  • We present the first paleoseismic investigation of the Hyde Fault, one of a series of north-east striking reverse faults within the Otago range and basin province in southern New Zealand. Surface traces of the fault and associated geomorphology were mapped using a lidar digital elevation model and field investigations. Trenches were excavated at two sites across fault scarps on alluvial fan surfaces. The trenches revealed stratigraphic evidence for four surface-rupturing earthquakes. Optically stimulated luminescence dating constrains the timing of these events to around 47.2 ka (37.5–56.7 ka at 95% confidence), 34.6 ka (24.7–46.4 ka),23.5 ka (19.7–27.3 ka) and 10.5 ka (7.9–13.1 ka). We obtain a mean inter-event time of12.4 kyr (2.3–23.9 kyr at 95% confidence) and the slip rate is estimated to be 0.22 mm/yr (0.15–0.3 mm/yr). We do not find evidence to suggest that earthquake recurrence on the Hyde Fault is episodic, in contrast to other well-studied faults within Otago, suggesting diverse recurrence styles may co-exist in the same fault system. This poses challenges for characterising the seismic hazard potential of faults in the region, particularly when paleoearthquake records are limited to the most recent few events. <b>Citation:</b> Jonathan D. Griffin, Mark W. Stirling, David J.A. Barrell, Ella J. van den Berg, Erin K. Todd, Ross Nicolls & Ningsheng Wang (2022) Paleoseismology of the Hyde Fault, Otago, New Zealand, <i>New Zealand Journal of Geology and Geophysics</i>, 65:4, 613-637, DOI: 10.1080/00288306.2021.1995007

  • We present earthquake ground motions based upon a paleoseismically-validated characteristic earthquake scenario for the ~ 48 km-long Avonmore scarp, which overlies the Meadow Valley Fault, east of Bendigo, Victoria. The results from the moment magnitude MW 7.1 scenario earthquake indicate that ground motions are sufficient to be of concern to nearby mining and water infrastructure. Specifically, the estimated median peak ground acceleration (PGA) exceeds 0.5 g to more than ~ 10 km from the source fault, and a 0.09 g PGA liquefaction threshold is exceeded out to approximately 50-70 kilometres. Liquefaction of susceptible materials, such as mine tailings, may occur to much greater distances. Our study underscores the importance of identifying and characterising potentially active faults in proximity to high failure-consequence dams, including mine tailings dams, particularly in light of the requirement to manage tailing dams for a prolonged period after mine closure. Paper presented at Australian National Committee on Large Dams (ANCOLD) conference 2020, online. (https://leishman.eventsair.com/ancold-2020-online/)