From 1 - 10 / 25
  • The New Caledonia Trough is a bathymetric depression 200-300 km wide, 2300 km long, and 1.5-3.5 km deep between New Caledonia and New Zealand. In and adjacent to the trough, seismic stratigraphic units, tied to wells, include: Cretaceous rift sediments in faulted basins; Late Cretaceous to Eocene pelagic drape; and ~1.5 km thick Oligocene to Quaternary trough fill that was contemporaneous with Tonga-Kermadec subduction. A positive free-air gravity anomaly of 30 mGal is spatially correlated with the axis of the trough. We model the evolution of the New Caledonia Trough as a two-stage process: (i) trough formation in response to crustal thinning (Cretaceous and/or Eocene); and (ii) post-Eocene trough-fill sedimentation. To best fit gravity data, we find that the effective elastic thickness (Te) of the lithosphere was low (5-10 km) during Phase (i) trough formation and high (20-40 km) during Phase (ii) sedimentation, though we cannot rule out a fairly constant Te of 10 km. The inferred increase in Te with time is consistent with thermal relaxation after Cretaceous rifting, but such a model is not in accord with all seismic-stratigraphic interpretations. If most of the New Caledonia Trough topography was created during Eocene inception of Tonga-Kermadec subduction, then our results place important constraints on the associated lower-crustal detachment process and suggest that failure of the lithosphere did not allow elastic stresses to propagate regionally into the over-riding plate. We conclude that the gravity field places an important constraint on geodynamic models of Tonga-Kermadec subduction initiation.

  • Paleoproterozoic-earliest Mesoproterozoic sequences in the Mount Isa region of northern Australia preserve a 200 Myr record (1800-1600 Ma) of intracontinental rifting, culminating in crustal thinning, elevated heat flow and establishment of a North American Basin and Range-style crustal architecture in which basin evolution was linked at depth to bimodal magmatism, high temperature-low pressure metamorphism and the formation of extensional shear zones. This geological evolution and record is amenable to investigation through a combination of mine visits and outcrop geology, and is the principal purpose of this field guide. Rifting initiated in crystalline basement -1840 Ma old and produced three stacked sedimentary basins (1800-1750 Ma Leichhardt, 1730-1670 Ma Calvert and 1670-1575 Ma Isa superbasins) separated by major unconformities and in which depositional conditions progressively changed from fluviatile-lacustrine to fully marine. By 1685 Ma, a deep marine, turbidite-dominated basin existed in the east and basaltic magmas had evolved in composition from continental to oceanic tholeiites as the crust became increasingly thinned and attenuated. Except for an episode of minor deformation and basin inversion at c. 1640 Ma, sedimentation continued across the region until onset of the Isan Orogeny at 1600 Ma.

  • Stations on the Australian continent receive a rich mixture of ambient seismic noise from the surrounding oceans and the numerous small earthquakes in the earthquake belts to the north in Indonesia, and east in Tonga-Kermadec, as well as more distant source zones. The noise field at a seismic station contains information about the structure in the vicinity of the site, and this can be exploited by applying an autocorrelation procedure to the continuous records. By creating stacked autocorrelograms of the ground motion at a single station, information on crust properties can be extracted in the form of a signal that includes the crustal reflection response convolved with the autocorrelation of the combined effect of source excitation and the instrument response. After applying suitable high pass filtering the reflection component can be extracted to reveal the most prominent reflectors in the lower crust, which often correspond to the reflection at the Moho. Because the reflection signal is stacked from arrivals from a wide range of slownesses, the reflection response is somewhat diffuse, but still sufficient to provide useful constraints on the local crust beneath a seismic station. Continuous vertical component records from 223 stations (permanent and temporary) across the continent have been processed using autocorrelograms of running windows 6 hours long with subsequent stacking. A distinctive pulse with a time offset between 8 and 30 s from zero is found in the autocorrelation results, with frequency content between 1.5 and 4 Hz suggesting P-wave multiples trapped in the crust. Synthetic modelling, with control of multiple phases, shows that a local Ppmp phase can be recovered with the autocorrelation approach. This approach can be used for crustal property extraction using just vertical component records, and effective results can be obtained with temporary deployments of just a few months.

  • Paleogeographic reconstructions of the conjugate Australian and Antarctic rifted continental margins based on geological versus plate tectonic considerations are rarely, if ever, fully compatible. Possible exceptions include a recently published plate tectonic reconstruction combining ocean floor fabrics and magnetic anomalies with revised rotational poles for successive extensional events in the region that coincidently brings about a match between the Kalinjala Mylonite Zone in South Australia and Mertz Shear Zone in Antarctica (Whittaker et al., 2007). A match between these two crustal-scale shear zones has been previously proposed on isotopic and geological grounds (Di Vincenzo et al., 2007; Goodge and Fanning, 2010). However, whereas the Mertz Shear Zone marks the western limits of ca. 500 Ma magmatic activity in Antarctica (Delamerian-Ross Orogen), the Kalinjala Mylonite Zone lies well to the west of this magmatic front and is bounded either side by rocks of the Mesoarchean-Mesoproterozoic Gawler craton. An alternative geological match for the Mertz Shear Zone in Australia is the hitherto unrecognised Coorong Shear Zone in South Australia (Fig. 1), tracts of which have been intruded by gabbro and granite of Delamerian-Ross age and west of which such rocks are either completely absent or greatly reduced in volume. The north-south-trending Coorong Shear Zone lies directly along strike from the (Spencer-) George V Fracture Zone and is clearly visible in aeromagnetic images and offshore deep seismic reflection data as a steep to subvertical crustal-penetrating basement structure across which there is an abrupt change in the orientation of magnetic fabrics and sedimentary basin fault geometries. An equally conspicuous change of direction is evident in ocean floor fabrics immediately offshore, inviting speculation that the along-strike George V Fracture Zone originated through reactivation of the older Coorong Shear Zone and shares the same orientation as the original basement structure. Correlation of this basement structure with the Mertz Shear Zone leads to a reconstruction of the Australian and Antarctic continental margins in which Antarctica and the entrained Mertz Shear Zone are located farther east than some recent restorations allow (Fig. 1). These restorations commonly fail to take into account an episode of NE-SW to NNE-SSW-directed extension preserved in the sedimentary and seismic record of the neighbouring Otway Basin and which is intermediate in age between initial NW-SE directed rifting in the Bight Basin and later N-S rifting that affected all of the continental margin and produced most of the ocean floor fabrics, including all of the major oceanic fracture zones. The Coorong basement structure was briefly reactivated as a sinistral strike-slip fault during this phase of NE-SW extension, but failed to evolve into a continental transform fault as was the case farther east off the southwest coast of Tasmania. There, an analogous pre-existing north-south-trending basement structure identified as the Avoca-Sorell Shear Zone was optimally oriented for reactivation as a strike-slip faulting during north-south rifting (Gibson et al., 2011). This reactivated structure is continuous along strike with the Tasman Fracture Zone and shares many similarities with the Coorong Shear Zone, separating not only basement domains with opposing magnetic fabrics but sedimentary rift basins with differently oriented sets of normal faults. Together, these two basement structures constitute an important first order constraint on palaeogeographic reconstructions of the Australian and Antarctic margins, and serve as a critical test of future palaeogeographic reconstructions based on ocean floor fabrics and plate tectonic considerations.

  • <p>The Roebuck Basin is considered a new and relatively untested hydrocarbon province in the central North West Shelf of Australia. Inconsistent results from drilling for hydrocarbons highlights the need to better understand the deep structures along this rifted margin that initially formed as an intra-continental, failed rift during Late Permian. Recent wells penetrated the previously unknown Lower-Middle Triassic fluvio-deltaic sedimentary package in the Bedout Sub-basin (inboard part of the Roebuck Basin), including intervals with major oil and gas discoveries. Another two wells, Anhalt 1 and Hannover South 1, only penetrated the top of this succession and they encountered volcanics in the Rowley Sub-basin (outboard part of the Roebuck Basin). Steeply dipping clinoforms observed in the seismic data in the Rowley Sub-basin have been interpreted either as a lava delta complex associated with a failed triple junction; or as a series of back-stepping, Late Permian carbonate ramps and banks, interpreted to have developed on a thermally subsiding rift flank. The implication for prospectivity between the two scenarios is significant. Geoscience Australia undertook a Triassic regional basin analyses, including potential field modelling to validate whether the two proposed models are a plausible solution. A combination of magnetic and gravity 2.5D modelling along nine key regional seismic lines, considered the distribution of potential intrabasinal volcanic rocks and the crustal structure, including Moho depth and depth to top crystalline basement. <p>New seismic interpretation correlated to recent wells, including 2D and 3D seismic reflection surveys was integrated with deep seismic reflection and refraction data resulting in an improved geometry and lithology model that was input into the potential field analyses. The results show that the combined Jurassic and Triassic successions reach up to 16 km deep in the central North West Shelf. The Lower-Middle Triassic sediment package in the Rowley Sub-basin correlates with up to 10 km of dense material (about 2.7 g/cm3 density) and contains magnetic features partially sourced from basalts at the top of the section, as intersected in Anhalt 1 and Hannover South 1. Combined with other causative sources within basement, the basalts correlate with a spatially large positive magnetic anomaly that extends north onto the Scott Plateau and into the Barcoo Sub-basin; in the offshore southwest part of the Browse Basin, where Warrabkook 1 intersected Late Jurassic volcanoclastics at its total depth. The presence of high density and high positive magnetic anomalies in the Lower-Middle Triassic and basement supports the presence of a large igneous province in this area. This interpretation in the outer Rowley Sub-basin downgrades the petroleum prospectivity in this area for this Lower-Middle Triassic interval. Petroleum prospectivity remains in the area due to the overlying sediments containing good source rocks which have been identified to have good to excellent generative potential. <p>The Lower-Middle Triassic sediment package in the adjacent northern Carnarvon Basin has been intersected only on the Lambert Shelf; encountering fluvio-deltaic sediments. In the offshore part of the northern Carnarvon Basin, the nature of this sediment package still remains enigmatic. It correlates with low density sediments (about 2.5 g/cm3 density) that include magnetic bodies on the outboard Exmouth Plateau. The basement and crust show crustal thinning with the presence of a thick layer of interpreted hyper-extended continental crust or exhumed lithospheric mantle. This crustal domain is overlain by thick onlapping Lower-Middle Triassic sediments which form a triangular shape depocentre in the inboard northern Carnarvon Basin, wrapping around the edge of the Pilbara Craton. The location of this initial thick sediment package suggests that it was controlled by the inherited thermal structure of the Late Permian-early Triassic rift architecture that is associated with some volcanics related to a large igneous province extending across the central North West Shelf. As described in the Rowley Sub-basin, the petroleum prospectivity of the northern Carnarvon Basin remains in the overlying sediments showing similar characteristics and indicating good to excellent hydrocarbon generative potential.

  • Crustal magnetism is predominantly caused by the abundantly distributed ferrimagnetic mineral magnetite which posses the property of spontaneous magnetisation. Such magnetisation is dependent on temperature, which if high enough, will cause magnetite minerals to lose their magnetic property of spontaneous magnetisation and become paramagnetic. This temperature, known as the Curie point isotherm, occurs at ~580oC for magnetite. As temperature increases with depth in the crust, the Curie point can be taken as the depth at which the crustal magnetism ceases to be recorded. Using power spectral analysis of aeromagnetic data, we have generated a Curie point depth map for the Olympic Dam region in South Australia, host to the world's largest iron oxide-copper-gold-uranium deposit. The map shows an approximately 55 km long by 35 km wide and 40 km deep hemispherical depression in the Curie point depth beneath Olympic Dam, from a background average of around 20 km. Olympic Dam is notable for its large iron and uranium content, and it is located in a region of unusually high heat flow (av. 73 mWm-2). With such high heat flow one would expect the Curie point depth to be shallow. The paradox at Olympic Dam is that the Curie point depth is deep, raising questions about the geothermal gradient, depth-integrated abundance of heat-producing elements, and the source of the iron. A possible solution to the paradox is to interpret the deep Curie point depth as a giant hydrothermal alteration zone, where the heat-producing elements have been scavenged and concentrated into the upper crust, along with the gold and copper. The iron must have a significant mantle source as it is measured throughout the full crustal column. As iron is electrically conductive, such an interpretation is supported by the high conductivity measured deep beneath Olympic Dam.

  • New compilations of levelled marine and onshore gravity and magnetic data are facilitating structural and geological interpretations of the offshore northern Perth Basin. Multi-scale edge detection helps the mapping of structural trends within the basin and complements interpretations based on seismic reflection data. Together with edge detection, magnetic source polygons determined from tilt angle aid in extrapolating exposed basement under sedimentary basins and, therefore, assist in the mapping of basement terranes. Three-dimensional gravity modelling of crustal structure indicates deeper Moho beneath the onshore and inboard parts of the Perth Basin and that crustal thinning is pronounced only under the outboard parts of the basin (Zeewcyk Sub-basin).

  • The Australian earth sciences have been recognized as part of Australia's key scientific capability to understand the structure and evolution of the Australian continent. Over the last five years, Geoscience Australia, through its Onshore Energy Security Program (OESP), in conjunction with the State and Territory Geological Surveys, the Predictive Mineral Discovery Cooperative Research Centre (pmd*CRC), the AuScope Earth Imaging (under Australian Government's National Collaborative Research Infrastructure Strategy) and the Australian National Seismic Imaging Resource has acquired over 6,500 line kilometres of new world-class seismic reflection data and over 3,700 kilometres of magnetotelluric (MT) data from more than 640 stations. Geoscience Australia acquires high quality deep seismic reflection data in most of Australia's economically significant geological regions, by collecting at least one deep seismic reflection traverse across the key structures. The acquisition parameters for regional vibroseis surveys have been selected from broad experience in hard rock environments and experimental programs prior to seismic acquisition. Three IVI HEMI-50 or 60 peak force vibrators are used with three 12 s varisweeps with 80 m between vibration points, 40 m group interval, and 20 s listening time to image down to approximately 60 km in depth. Geoscience Australia continues to provide expertise in deep crustal seismic reflection processing and mineral province interpretation to collaborative research programmes which focus on understanding the 3D crustal architecture and mineral systems within `hard-rock' mineral provinces. As part of this program , broadband and long period MT data have been acquired along 12 deep seismic reflection transects across potential mineral provinces and frontier sedimentary basins.

  • In 2008, as part of the Australian Government's Onshore Energy Security Program, Geoscience Australia, acquired deep seismic reflection, wide-angle refraction, magnetotelluric (MT) and gravity data along a 250 km east-west transect that crosses several tectonic domain boundaries in the Gawler Craton and also the western boundary of the South Australian Heat Flow Anomaly (SAHFA). Geophysical datasets provide information on the crustal architecture and evolution of this part of the Archean-Proterozoic Gawler Craton. The wide-angle refraction and MT surveys were designed to supplement deep seismic reflection data, with velocity information for the upper crust, and electrical conductivity distribution from surface to the upper mantle. The seismic image of the crust from reflection data shows variable reflectivity along the line. The upper 2 s of data imaged nonreflective crust; the middle to lower part of the crust is more reflective, with strong, east-dipping reflections in the central part of the section.The 2D velocity model derived from wide-angle data shows velocity variations in the upper crust and can be constrained down to a depth of 12 km. The model consists of three layers overlying basement. The mid-crustal basement interpreted from the reflection data, at 6 km in depth in the western part of the transect and shallowing to 1 km depth in the east, is consistent with the velocity model derived from wide-angle and gravity data. MT modelling shows a relatively resistive deep crust across most of the transect, with more conductive crust at the western end, and near the centre. The enhanced conductivity in the central part of the profile is associated with a zone of high reflectivity in the seismic image. Joined interpretation of seismic data supplemented by MT, gravity and geological data improve geological understanding of this region.

  • Continental rifting and the separation of Australia from Antarctica commenced in the Middle-Late Jurassic and progressed from west to east through successive stages of crustal extension, basement-involved syn-rift faulting and thermal subsidence until the Cenozoic. Early syn-rift faults in the Bight Basin developed during NW-SE directed extension and strike mainly NE and E-W, parallel to reactivated basement structures of Paleoproterozoic or younger age in the adjacent Gawler craton. This extension was linked to reactivation of NW-striking basement faults that predetermined not only the point of breakup along the cratonic margin but the position and trend of a major intracontinental strike-slip shear zone along which much of the early displacement between Australia and Antarctica was accommodated. Following a switch to NNE-SSW extension in the Early Cretaceous, the locus of rifting shifted eastwards into the Otway Basin where basin evolution was increasingly influenced by transtensional displacements across reactivated north-south-striking terrane boundaries of Paleozoic age in the Delamerian-Ross and Lachlan Orogens. This transtensional regime persisted until 55 Ma when there was a change to north-south rifting with concomitant development of an ocean-continent transform boundary off western Tasmania and the South Tasman Rise. This boundary follows the trace of an older Paleozoic structure optimally oriented for reactivation as a strike-slip fault during the later stages of continental breakup and is one of two major basement structures for which Antarctic equivalents are readily identified. Some ocean floor fracture zones lie directly along strike from these reactivated basement structures, pointing to a link between basement reactivation and formation of the ocean floor fabrics. Together with the two basement structures, these fabrics serve as an important first order control on palaeogeographic reconstructions of the Australian and Antarctic conjugate margins.